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1. INTRODUCTION

This document reports on the developmen-t and analysis of a

new, easily expandable, highly fault tolerant self-routing

computer network topology. The topology applies equally to

any general purpose computer networking environment. This

new connectivity scheme is named the "spiral" topology for

reasons that will become evident shortly. A spiral network

evolves by adding modules to a minimum starting topology. A

module consists of four fully connected computer nodes. The

modules are added to the existing topology one at a time,

until the desired network size Is attained. Figure 1-1(a)

shows an example of a seven module, 28 node network. The

module threading pattern in figure 1-l(b) depicts more

clearly the order in which modules are connected.

The spiral topology features a simple Internal self-routing

algorithm that adapts quickly, and automatically, to failed

links or nodes. The simple routing feature, our selection

of four computer nodes to form a module, and the ease at

which the network can be expanded, are all direct

consequences of our choice of a base four (4) node numbering

system for internal control of the network.

Analysis confirms that throughout the spiral network,

routing can be done "on-thb-fly" based on spiral and

direction flags Initialized at the source node. No global
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network connectivity or routing tables are necessary at

nodes. There Is no global network overseer (master) node

since all nodes operate at the same common precedence level.

A particular node has routing and status knowledge of

directly connected nodes only.

The spiral topology, with Its fast on-the-fly routing

capability, Is highly amenable to fiber optic communications

In both local and wide area computer networks. The fast

routing attribute precludes storing of messages while a

routing decision is being made. Further, since the

simulation model assumes, and Is run undet Poisson arrival

rate of exponentially distributed messages, Integrated

Services Digital Network (ISDN) type traffic can be passed

over the network with ease. This is possible because ISDN

traffic is expected to be an independent mix of voice, data,

and video that will be transmitted using circuit and packet

switching technology. A Poisson arrival rate of traffic

means that the time between message arrivals is

exponentially distributed, and the Independent traffic mix

of voice, data, and video Is best modeled by selecting the

size of transmitted messages from an exponential

distribution. Assuming a fixed transmission rate, the

service time of this traffic mix will be exponentially

distributed.
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The motivation for a new computer network topology is

introduced in chapter 2, where two current applications

areas are discussed. In chapter 3, we present a brief

description of the four traditional network topologies: the

bus, ring, star, and mesh. Chapter 4 consolidates the time

delay formulas for the most popular local area network

topologies.

Chapter 5 marks the beginning of the new and significant

contribution to the field of Computer Communications, since

that chapter contains a general description of the spiral

network topology. Chapter 6 addresses how the spiral

routing algorithm operates with and without failed computer

nodes. A detailed analysis of the error free spiral network

Is presented in chapter 7, and chapter 8 contains the

results of analysis when nodes have failed. Chapter 9

summarizes conclusions resulting from a thorough study of

the spiral network topology. And finally, Chapter 10

contains a discussion of suggested areas for additional

study.
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2. MOTIVATION FOR A NEW TOPOLOGY

2.1. Specific Operational Requirement

The National Aeronautics and Space Administration (NASA) is

currently pursuing its objective of having a Space Station

operational in the 1990's. NASA planners foresee the

station evolving from an initial physical "module" ei that

supports critical life support and spacecraft navigational

functions, to a fully manned self-sustaining station where

several dozen space pioneers live and work for extended

periods of time. The station will evolve one module at a

time, until the complete desired configuration is attained

ii.

NASA expects each module to contain 4 - 5 computer nodes

that must Interact and be highly tolerant to faults within

that module, and throughout the entire network. A fault Is

defined as a failed network node or link. Limited physical

space within each station module, and exorbitant cost,

preclude hardware duplication as the answer to the fault

tolerance requirement. Further, NASA envisions the station

evolving to a total of 10 - 20 modules, each containing 4 -

5 local area computer network nodes 1i1. NASA requires that

all nodes have access to all others, no matter where they

are physically positioned in the Space Station.
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Although the station is not expected to become operational

until the 1990's, Space Station planners and developers have

already defined fairly clearly the type of environment, and

communications needs expected in that environment. In

particular, a Space Station Information System (48] has been

described, and functions of the various components have been

allocated to specific data system building blocks.

The following list documents the anticipated functions of

the Space Station Information System (48]:

- Manage Customer/Operator Delivered Data

- Manage Customer/Operator Supplied Data

- Schedule and Execute Operations

- Operate Core Systems

- Manage Facilities and Resources

- Develop, Simulate, Integrate, and Train

- Support Space Station Programs

It can be seen from this list that the *users" of the Space

Station Information System will include Space Station core

systems, crew members, as well as customer equipment.

Although subject to change as technological advances and

constraints are realized, the following general functions of

the Command and Data Management Support Subsystem for the

Space Station are expected to mold the type of

momaombw
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communications network ultimately deployed aboard the

station 1]:

* Communications and Tracking

Voice intercom

Detached vehicle

Ground crew and vehicles

* Data Handling

Acquisition/Retrieval of data

Data distribution (automatic and upon demand)

Data processing/number crunching

Storage of data

Realtime support for display and crew Input

* Closed-Circuit TV

Cameras and monitors

* Timing

Generation

Distribution

Timing displays

These general functions must be implemented in a fashion

that is both efficient, and user friendly. Further, a key

aspect of the resulting communications network Is that it be

highly fault tolerant. In an environment as isolated from

the earth as the Space Station will be from a logistics

viewpoint, highly reliable fault tolerant communications

among those aboard the station, as well as between the
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station and ground control, Is essential.

Therefore, NASA has identified the following preliminary

requirements of the communications network that will form

the heart of the Space Station Data System (M]:

* Highly fault-tolerant

* Having between ten and one hundred nodes

* All nodes are created equal, but not all messages

* The network will operate in the Space Station

composed of from ten to twenty space lab modules,

with four to five nodes per module

* Total Space Station configuration has the maximum

dimension of 150 feet

* The space lab modules are butted up against each

other to form complex shapes

* The network management functions will be

distributed among the nodes

Based on these requirements, it becomes quite clear that a

local area network with standard interfaces (and identical

equipment where possible), and high bandwidth capability Is

necessary to provide both responsiveness and the high degree

of fault tolerance mandated. Of course the degree of fault

tolerance is more a function of the connectivity of the

resulting network, than it Is the speed as perceived by the

user.

L UM1 UK 1119
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To meet these requirements, NASA needs a network topology

that is 1) highly tolerant to failure(s); 2) easily

expandable without having to reconfigure the existing

topology; 3) capable of operating via decentralization of

control; and 4) capable of hardling an Integration of voice,

video, and data traffic. It will be shown that the spiral

topology meets these needs.

2.2. Integrated Services Digital Network

2.2.1. Introduction

This section presents a brief overview of the Integrated

Services Digital Network (ISDN). Specific transmissions

protocols that can be used for integrating voice and data in

a local area network are addressed in [2]. Further, a

detailed analytical discussion of several mathematical

models suitable for Integrating voice and data is presented

by N. Schwartz In [3].

Information networks around the globe are approaching a

revelation In new service and revenue opportunities. The

revelation is ISDN. The opportunities derive from the

transport power and flexibility of ISDN's standard access

interfaces and integrated channel structures. End users,

network providers , and network-systems suppliers alike will

benefit from a host of integrated voice and data services
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which ISDN makes possible for the first time [4].

Evolution of the public-switched telephone network in the

past has been governed primarily by the need to provide

voice services. The network that evolved was analog, and

predominately electromechanical. Before 1962 (when pulse

code mmdulation was introduced), the transmission facilities

for the telephone network were all analog [5, 6]. This

analog network was not well suited to serve the emerging

needs of data, facsimile, and video. In the past decade,

however, the many advantages of digital systems (small cost

and size, large transmission and switching capabilities,

high signal quality, flexibility, ease of maintenance) have

promoted the conversion of tran.mission and switching

systems from analog to digital in many telephone

administrations around the world.

The criteria for Justifying conversion to digital technology

have been lower life-cycle operating costs rather than

Increased revenue due to new nonvoice services. So although

the switched network is slowly being transformed to a

digital one, the architecture of the facilities is still

biased towards providing voice service [6J.

The adoption of digital techniques in the public switched

network makes it possible and cost effective to integrate

voice, data and video services into a single Integrated

L
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Services Digital Network. The ISDN is envisioned as an

international digital communications network, supporting a

wide spectrum of user needs (8]. The central theme in ISDN

is that different services, all of them digital in nature,

can use this same connection or channel, resulting in better

channel utilization.

The fundamental principles embodied in an ISDN are [7]

digitization with high bandwidth, world-wide standards, and

integrated fuctionality and services. The three elements

generally recognized as necessary to support these

principles are [31: 1) All digital channels are used

end-to-end; 2) the network handles a multiplicity of

services with possibly differing bandwidths using

interleaved bit streams; and 3) there are standard

interfaces for user access.

The major bottleneck impacting the evolution to an ISDN

appears to be the conversion of existing subscriber local

loops and equipment, to digital operation (9, 101.

2.2.2. Definition of an IDSN

The goal of the ISDN is to provide a versatile, multiservice

network with standard customer interfaces and international

capabilities. This goal results in the definition and

standardization of digital Interfaces, both user-to-network,

"0i



and network-to-network. ISDN Is a generic term referring to

the integration of communication services transported over

digital facilities. As a public network concept, ISDN deals

with the evolution of the digital network as a carrier of

both voice and data applications [8, II]. The ISDN aim Is to

provide cost-effective, end-to-end digital connectivity to

support a wide range of voice and nonvoice services (12].

The International Telegraph and Telephone Consultation

Committee's (CCITT) conceptual principle Is that OThe ISDN

will be based on and evolve from the telephony ISDN by

progressively incorporating additional functions and network

features, Including those of any other dedicated networks

such as data packet-switching, so as to provide for existing

and new services" (6]. The CCITT defines ISDN as

A network evolved from the telephony Integrated

Digital Network (IDN) that provides end-to-end

digital connectivity to support a wide range of

services, including voice and nonvoice services, to

which users have access by a limited set of

standard multipurpose user-network Interfaces.

ISDN is motivated by the economics and flexibility

associated with multiservice applications. The evolution to

multiservice applications has led to the ISDN concept of a

family of standard customer Interfaces which provide access

to the network, all of which operate In synchronous, full

R&MMWO- "-I WNO-,R FN & .;
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duplex mode [61.

The standard interface concept is being v-igorously addressed

by the CCITT. Study groups of the CCITT are working on the

development of interfaces that will be compatible with

existing 64-kbps digital voice channels, and that will

incorporate signaling channels as well. An example of such

an interface, the first one developed as a CCITT

recommendation [3], is the 2B + D narrowband interface.

This consists of two 64-kbps B channels for information

transfer, and a 16-kbps D channel for signaling and other

uses (figure 2-1). The three channels, totaling 144-kbps of

transmission capability, are Interleaved. A B channel could

be used for digital voice or circuit switched data; the D

channel could be used for carrying packet switched data as

well as control packets (31. In particular, the D channel

may be used for signaling for the B channel, telemetry, and

low-speed data transport till. Wider band interfaces, based

on an nB + D structure, with the D channel considered a

64-bkps channel, are also being developed as CCITT

recommendations. With n = 23, this possible standard makes

the structure compatible with the 1.544-Mbps Ti standard; n

= 30 makes It compatible with the worldwide 2.048-Mbps

digital transmission standard. Other Interface

recommendations are designed to handle even higher bandwidth

services such as video and high speed facsimile (3].
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In the Bell Operating Companies (BOC) networks, initial ISDN

integration will be realized on the access portion of the

network. Figure 2-I displays the concept of an ISDN

interface frame. And figure 2-2 represents the conceptual

view of ISDN capabilities [11].

2.2.3. Architecture

Irvin Dorros (13, 14] suggests the general local

architecture shown in figure 2-3. The key ISDN concepts are

that the customer will be supplied with a telecommunications

transport capacity measured in maximum bit rate at a

standardized interface. This bit stream capacity will be

provided by the network to a customer's premise in what

Dorros calls a "digital pipe". The customer will aggregate

the variable bit rate capacity needs of his terminals at a

control device that interfaces with this network pipe.

Ultimately, packet and circuit switching access will be

integrated and provided on the same pipe.

As an architectural representation for the network itself,

Mario Gerla (5] forsees ISDNs evolving in three phases: In

phase I, the ISDN will consist of two separate networks, one

for circuit-switched (CS) traffic, and the other for

packet-switched (PS) traffic, and a single access interface

for both networks. In phase-II, CS and PS traffic will

share transmission media but will use different switching
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facilities. Finally. in phase III, transmission and

switching facilities will be shared by CS and PS traffic in

a fully hybrid Integrated network.

Perhaps the most elaborate description of the evolving ISDN

architecture Is contained In OBell's Concept of the ISDN*

(15]. This reference provides three separate Bell system

network capabilities, each of which can support one or

several ISDN applications. All of these capabilities

provide switched, end-to-end digital, full-duplex data

connections over 2-wire loops. The first capability deals

with circuit switching of 56-kbps. The second deals with

packet switching in a local area at speeds of up to 8-kbps

and possibly higher. This second capability involves the

use of statistical multiplexers to concentrate many calls

onto a single 56-kbps line. The final capability deals with

long haul packet switching at speeds of 56-kbps.

An outline of current proposals for an early application of

optical fiber in the local network, and discussion of how

these proposals act as stepping stones toward the broadband

ISDN is found in 116].

v V..%-I
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2.2.4. Service Requirements and Network Capabilities

ISDN planning must take into consideration the wide range of

customer service requirements that an ISDN might be required

to support. These customer needs Include (15] interactive

data, image processing, bulk data, audio and video.

Further, standard ISDN user-network Interfaces must be

responsive to these customer needs (181. The following

sections give some general characterizations of the

transmission bit rates of these customer needs. Other

Important considerations Include the burstiness of traffic,

the error rate required and session length. All of these

vary over a wide range depending upon the application.

Figure 2-4 graphically summarizes some of these

characteristics.

Many telemetry type applications such as meter reading,

energy management, and security, have very low average bit

rates, less than 300-bps. Interactive data applications

generally use terminals to access data bases, word

processors, computers and other terminals. These

applications include Inquiry/response and transactions which

tend to have bit rates less than 4.8-kbps (15].

Image applications are characterized by the transmission of

fixed images and include facsimile, graphics and slow-scan

or freeze-frame TV. They can be handled with a bit rate of
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64-kbps or less [15].

Audio includes signals such as voice and music. In the U.S.,

voice has generally been encoded at 64-kbps for transmission

on the network. Methods do exist, however for transmission

of voice at speeds less than 64-kbps with acceptable quality

for many applications (15].

Bulk data transfer encompasses applications such as the

transmission of large data files between computers. One

application is the nightly transfer of billing data from

large remote locations to a central host facility. Such

applications can use speeds of up to 1.544-Hbps (151.

Full motion video can be provided In a number of formats.

For example, broadcast quality video requires about 4.5-MHz

as an analog signal or approximately 100-Mbps as a digital

signal. Of course signal compression techniques can reduce

this considerably (10, 151.

The various customer needs just described can be generated

from a wide variety of customer types (17]. These include

the banking and airline industries, universities, electronic

publishing, electronic suppport of catalog shopping,

automated offices, and even private networks that serve the

specific needs of single large-customers.
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Studies of the ISDN objectives have Identified four general

categories of network-level functional entities that may be

needed (121:

* Transaction routing and control

* Network management and operation

* "Add-on" characteristics (i.e. service options)

* Information processing

2.2.5. Evolution to an ISDN

Several authors express their own Interpretation of how ISDN

has and will continue to evolve [5, 10, 11, 12, 14, 15, 17,

19, 21]. Contained in this section is an attempt to tie

these approaches together in a way to demonstrate that

although unique interpretations exist, they all tend to

point in the same general direction. This section discusses

a global view of ISDN as key world-wide efforts are cited.

A recent issue of the Journal on Selected Areas in

Comm2u1cA! 2 il [203 contains numerous articles by various

authors on how different ISDN system components will likely

be implemented. And finally, Appendix A contains further

details on the evol:ition to an ISDN, addressing the Bell

Operating Companies (BOCs), and specific subsets of the

global ISDN.
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ISDN evolution will not be unique (12, 141, since

transformation will vary depending on such factors as the

existing network, operating organization, regulation,

competition, geographical and economic environment, and

technology and interpretation of standards.

ISDN's will be based on the concepts developed for telephone

Integrated Digital Networks (IDN's), and may evolve by

progressively Incorporating additional functions and network

features, Including those of other dedicated networks such

as circuit-switching and packet-switching for data, so as to

provide for existing and new services (6, 121.

Information users are looking to ISDN as a future

telecommunications service shopping center (12]. Shopping

centers yield efficient, easy access, and economies of

scale, by bringing many services under one roof. The ISDN is

being designed to give users a uniform view of a wide

variety of applications.

Although cost-effective functionality, and not technology,

Is the user's primary concern (121, users realize benefits

of an ISDN. They need timely, stable standards in order to

make cost-effective plans to tailor their network's

evolution to their business demands. The CCITT layered

Interface approach to ISDN standardization responds to the

user's needs, since It permits terminal and network

I
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technologies to evolve independently. ISDN flexibility is

achieved through setting digits in signaling protocol fields

and not setting voltages on a large number of interface

wires (12].

We now look at where we are In achieving the ISDN vision

(14]. General concensus within the industry is that for

integrated services networks, voice will be dominant for a

long time to come and will be the factor which sets the pace

of a truly integrated evolution. In the U.S., we have

surpassed the 1000 time division central office mark. In

addition, there are thousands of digital Private Branch

Exchanges (PABX's) of various sizes which connect into our

national communications network.

In transmission, there are nearly 100 million circuit miles

of T-carrier (Ti, T2, etc), and over 5 million circuit miles

of digital radio in the U.S. There are approximately a

quarter of a million loops employing digital subscriber

carriers. Lightwave Is also a fast emerging digital

tramsmission technology [141.

An important capability In an evolving ISDN Is common

channel signaling. Over 25% of U.S. Intertoll trunks are

now utilizing the world's largest packet switched network -

the Common Channel Interoffice Signaling (CCIS) Network

(14). Thus In the U.S., we have been and will continue to
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Introduce the transmission, signaling, and switching parts

of the ISDN.

The TransCanada Telephone System Is developing a fundamental

plan for an ISDN through 1990. By the late 1980's, about 2

million Canadian lines are expected to be served from

digital central offices. Canada already has an extensive

packet switched network called DATAPAC with Interconnections

to other countries (14).

There can be little doubt about the commitment of France to

the digitization of Its network. The French PT&T was the

first to commit Its future to digital switching and

transmission. France's TRANSPAC data network is In operation

and Is Interconnected to Euronet (141.

In Great Britain, the Post Office is planning an ISDN,

centered around System X and a nationwide lightwave network.

West Germany, Japan, Italy, and Sweden are all proceeding

towards digital switching and transmission. National data

networks, which are Interconnected into Euronet, now exist

in the major European countries. Videotex and Teletex are

also emerging in Europe, Japan, Caaada, and the U.S. (14).

This quick and incomplete summary of the status of the ISDN

evolution around the world gives the flavor of where we are

at present. The accomplishments which have been mentioned

I
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Involve the production and deployment of some parts of the

ISDN. Each of these has been deployed largely because it was

the economic choice for a specific application, such as a

digital local switch, a digital carrier system, or even a

digital service network. The combined capital and

operational savings available through digital switching and

transmission should continue to expand the deployment of

digital parts even without an ISDN E141. See Appendix A for

additional details on evolution to an ISDN.

2.2.6. ISDN Applicability to the NASA Space Station

As indicated earlier, the goal of the ISDN is to provide a

versatile, multiservice network with standard customer

Interfaces. ISDN will continue to evolve from the emerging

public digital network, and thus should be fairly well

defined, and also developed by the 1990's. The fact that

most authorities in the communications and computer fields

expect the ISDN to come into its own between now and 1990 Is

of particular significance to planners of the NASA Space

Station.

It now is clear that an ISDN type of structure aboard the

Space Station is advantageous for several reasons. First,

the evolving digital technology upon which the ISDN is based

will be well proven, and accepted by the time the Space

Station is to become operational. This allows NASA to take
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advantage of existing stdte of the art technology.

Secondly, the multiservice, versatile standard interface

requirements of the ISDN type network will accommodate the

voice, data, and video needs of the station quite well. This

is especially true If predicted advances in fiber optical

technology come to pass allowing for (perceived) unlimited

channel capacity. The station's requirements for quick

responsiveness and fast turnaround on critical computer

computations and processing, dictate very high channel

capacity. Also, by designing and Installing an ISDN type

communications network, the station will not have to expend

funds and manhours In determining how best to interface the

Space Station with the worldwide ISDN should a clear need to

do so exist. The technology will already exist and thus

NASA can concentrate on how best to Implement the technology

so as to provide most efficient and effective service to the

station. And finally, the anticipated size of the station Is

such that an Integration of hardware and software functions

is essential if all needs are to be met satisfactorily

within the 150 to 200 feet area. The concept of an ISDN

allows for the most efficient use of a very small work area.

In summary, the massive amounts of video, voice and bulk

data requirements of the station can best be met by

installing a fast (which Implies fiber optics technology),

highly modularized (which Implies ease of expansion),

integrated communications network. These requirements are

I,:' r~v ?
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precisely what the ISDN Is all about whether viewed In the

context of a local or long-haul network.

2.3. Why spiral Over Traditional Topologies?

Our spiral topology is flexible in that it Is easily

expanded to any desired number of modules. Although nodes

are added four at a time (as a full module), they need not

be activated locally until needed; the network still

functions properly. The expansion of a spiral configuration

requires no restructuring of a complex routing scheme, since

there Is none. There Is no need for each node to maintain

routing tables or connectivity matrices for the entire, or

partial network. Messages move automatically from node to

node based on the spiral and direction flags Initialized at

the originating node. Also, node failures have minimal

Impact on operational nodes since messages are automatically

routed around failed nodes by the directly connected

operational node. Further, with the spiral topology, severe

network degradation due to multiple node and module failures

does n~t preclude good nodes from communicating with each

other. As long as a path exists between any two nodes, no

matter the length, the self-routing algorithm will seek out

this path and deliver the message to its destination.

Finally, one major drawback t6 using fiber optics In local

area networks Is the relatively high cost (in time delay and

. ... ..
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money) associated with optical to electrical and electrical

to optical conversion of messages for intermediate storage.

In particular, the high speed of fiber communication in

store and forward environments is somewhat negated by the

slower process of converting the message for storage while

either a routing decision is made, or the message awaits the

outgoing transmission link. Conversion to electrical format

for temporary storage is necessary due to a lack of cost

effective optical memory technology for message storage.

With spiral, since messages are routed on-the-fly, there

will be no need to store messages while a routing decision

Is being made. Only busy links will cause the message to be

stored. Thus, the balance between message and circuit

switching should be more easily attained. This feature alone

opens numerous new opportunities for fiber optics use in

local area network environments, and other environments

where storing and forwarding of messages is an integral part

of transmission.
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3. REVIEW OF TRADITIONAL TOPOLOGIES

3.1. Introduction

Four traditional computer network topologies have emerged

over the years to form the basis for network structures: 1)

bus; 2) ring; 3) star; and 4) mesh. While each has proven

advantages for the environments for which they were

designed, each also has distinct disadvantages centered

around type and volume of traffic, delivery speed

requirements, number of users (connected nodes), and

geographica' placement of these users. Further, given that

one of these topologies is selected for a new network, users

are then expected to use one of the few access schemes

germane to that topology In order to Increase chances of the

network performing as originally intended.

3.2. Bus Topology

The bus topology (figure 3-i) is good for bursty type

traffic whose messages are relatively short. Although this

scheme can serve a large number of users, conflicts

resulting from attempts to transmit simultaneously by two or

more users (called collisions), are Inevitable. The

probability of collisions, and taking positive steps to

minimize them, results in a fairly low theoretical maximum

message throughput threshold. Access to a bus topology Is

&MIY&N -V -IN, MI
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usually via some contention scheme, where users compete with

each other for access to the transmission channel.

BROADCAST CHANNEL

Bus
* " "INTERFACE

UNITS
(BIUs)

USER
DEVICES

Figure 3-1. Broadcast Bus Topology.

3.3. Ring Topology

In ring topologies (figure 3-2), all users are connected In

a circular fashion, and a message Is passed around the ring

from one user to the next, until its final destination node

is reached. There is a maximum, theoretical limit to the

number of bits that can appear on a ring at any one time,

and throughput and delay are both heavily influenced by the

ring size. Further, some central-controller usually manages

the ring to Insure proper operation. In this environment,
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contention, reservation, or token passing are typical

schemes that determine who gets to send next.

RPING

~~~INTERFACE tJ
~UNITS

L..J DEVICES

Figure 3-2. Ring Topology.

3.4. Star Topology

The star (figure 3-3) topology relies heavily on a central

controller that acts as a *master' to the connected "slave"

nodes. Usually polling is the access scheme used here. The

major drawback to the star topology is that of failure of

the master controller. If the master fails, then the slaves

become isolated orphans. Although expanding a star is a bit

more straight forward than expanding a ring, every added

node means increased average network delay for each, since a

M Mv. ~M, NWI
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greater number of nodes compete for attention.

SHORT BUS

USER
DEVICES

Figure 3-3. Star Topology.

3.5. Fully Connected Mesh Topology

Finally, the fully connected mesh (figure 3-4) topology is

the most flexible of the traditional topologies since nodes

typically operate at the same precedence level, and failed

nodes can be bypassed via alternate routing. Thus, the mesh

offers the best opportunity over the other three to reduce

network delay and increase throughput for various numbers of

nodes. However, if more than a handful of nodes are fully

connected, complex network routing and management algorithas

are needed for successful operation. Also, most mesh type
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networks operate in a store and forward mode, where an

entire message is received and stored at an intermediate

node before it is forwarded to the. next node in the

message's route path. Therefore, the inherent increased

cost in dollars and complexity over the other three

traditional topologies, renders the mesh unacceptable to

several users who otherwise prefer, and may indeed demand,

the speed and flexibility of the mesh. This is especially

true in local area network environments.

4 3
A I

Figure 3-4. Fully Connected Mesh Topology.

PV
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4. TIME DELAY FORMULAS FOR LAN TOPOLOGIES

4.1. Introduction

This chapter consolidates the delay formulas for the most

popular access protocols used in a Local Area Network (LAN)

environment. Contained herein are discussions and

comparative results for Carrier Sense Multiple Access with

Collision Detection (CSMA/CD), Token Bus and Ring, Slotted

Ring, and Ordered Access Bus protocols. These protocols are

used In one of the network topologies of figures 3-1 to 3-4.

Computation and analysis of the variance of the waiting time

for token rings is found In [22]. Readers interested in the

end-to-end performance modeling of LAN's are referred to

(23] and (24].

4.2. Carrier Sense Multiple-Access with Collision Detection

(CSMA/CD)

4.2.1. Introduction

The delay formula for CSMA/CD presented In this section Is

that developed by Werner Bux (25], and altered algebraically

by Schwartz (26]. It is very- close to Simon Lam's result

(27]. The primary difference between the Bux and Lam delay
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formulas, and those developed by Leonard Kleinrock and Fouad

Tobagi in [28] Is as follows. Bux and Lam assume that in

the local networking environment, collisi-ons in the channel

are detected and that users involved in a collision abort

their transmissions immediately upon detection. Mechanisms

for detecting collisions and aborting collided transmissions

have been implemented in several multipoint cable networks

[29, 30, 31]. However, it appears to be much more difficult

to implement a "collision abort" capability In the radio

environment of Kleinrock and Tobagi's work [27].

4.2.2. Model Assumptions

Like the p-persistent protocol in (28), local network users

are assumed to be time synchronized so that following each

successful transmission, the channel is slotted in time.

Users can start transmission only at the beginning of a time

slot. r represents the channel propagation delay, and the

minimum slot size Is 2T. To enhance the validity of his

comparisons of various access protocols In a continuous,

nonslotted environment, Bux heuristically modifies Lam's

formula in (27] by reducing the mean delay by rT25J. Figure

4-1 illustrates Bux's CSMA/CD scheme. His result presented

here defines the mean transfer time T as the queueing and

access delay at the sender, the transmission time of the

packet, and the propagation delay. The protocol is defined

by two possible courses of action for ready users:

p
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1). Following a successful transmission, each ready user

transmits with probability 1.

2). Upon detection of a collision, each ready user uses an

adaptive algorithm for selecting Its retransmission

probability during the next slot.

RANDOM RETRANSMISSION INTERVAL

_ BUS

COLLISION COLLISION SENSED
DETECTION * ENFORCEMENT BUSY

STATION A " r-

TRANSMISSION ABORTED SUCCESSFUL

TRANSMISSIONSTATION B • .. -. . . . .
COLLISION - COLLISION
DETECTION ENFORCEMENT TIME

RANDOM RETRANSMISSION INTERVAL

Figure 4-i. CSMA/CD Bus: Example of Operation.

U 9
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The model assumes errors due to random noise are

insignificant relative to errors due to collision, and can

be neglected. The traffic source Is an infinite population

of users who collectively form an independent Poisson

process with an aggregate mean message generation rate of X

messages per second. It also assumes transmission times of

each message Is an Independently distributed random

variable. Comparison of delay versus throughput results are

shown In figure 4-2. The delay formula is:

T {E[Tp 2 ] + (4e + 2)TE[Tp] + 5T 2 + 4e(2e - I)T 2)

T-----------------------------------------------------
2(1 - X(E(Tp] + T + 2eT))

+ E[Tp] + 2Te + 2

2

(I - e-2XT)(2 /k + 2T/e - 6T)

2(Fp*(Me-XTI/e - I + e - 2XT }

where:

E[Tp] = mean service time,

E[Tp2 ] = second moment of service time,

X = aggregate arrival rate,

T = propagation delay, and

Fp*(X) = Laplace Transform of the

probability density for Tp.

The fourth candidate for local area subnet use presented by

Bux Is also Included In figure 4-2 for comparison. Section

w '
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4.6 contains a comparable discussion of this ordered access

scheme (multilevel multiple-access (MLMA)), and additional

details can be found In (25].
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ZO-Mb/s TransmiSsIon
Rate

2-kO Cable Length

100- so stations
Rings I-Bit Latency I I IPer Station
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24-81t Header
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Figure 4-2. Delay-Throughput Performance of Various

Protocols.
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4.3. Token Ring

4.3.1. Introduction

The formula presented in this section is also due to Bux

(251, His result is similar to formula (1), page 132 of the

work by DeMoraes and Rubin (32].

4.3.2. Model Assumptions

In a token ring, access to the transmission channel Is

controlled by passing a permission token around the ring.

The model assumes a population of S terminals. Messages

arrive at terminals In accordance with a Poisson process

with aggregate rate X. Here T represents the round-trip

delay in the ring, including possible delays of the signals

caused within each station. In the comparative results, T

was assumed to be 5 microsec per kilometer of cable length.

With respect to the order of service, two unique policies

are cited by Bux: I) A queue is served until it Is empty

("exhaustive service*); and 2) Only a limited number of

packets (e.g. one) is served per access possibility

(*non-exhaustive service"). Although, in principle,

performance differences exist-between these policies (331,

Bux contends that in a local network, these differences are

r - V.F.'.
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small If traffic Is uniformly distributed among stations. in

the model for which the formula applies, a new free token

was generated Immediately after the last bit of a packet had

left the source. This Implies the possibility for multiple

tokens on the ring. At most one of them however, is in the

free state. From reliability and recovery points of view, It

may be desirable to have no more than one token at a time on

the ring. This can be done in two ways [25]. 1) The sender

Issues a new token after he has completely removed his

entire packet (*single-packet" operation). In Bux's model,

this can be taken into account by prolonging the packet

service time T p by the total ring round-trip delay T. 2) A

more efficient soluticn is that the sender does not issue a

new token before he has received his own token back

(usingle-token" operation). This rule becomes effective In

cases when a packet Is shorter than the ring latency. In

the performance model, this can be described by setting Tp

equal to T for all packets shorter than the ring latency.

Comparative results are presented In figure 4-2, and the

formula for the mean delay is:

pE[Tp 2 ] T(! - p/S) T

T = ------------ + E[Tp] +- --------- + -
2(1 - p)E[Tp] 2(1 - p) 2

where:

S = number of-connected stations and

P = XE[Tp].

or
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4.4. Token Bus

In this access scheme, the token controls access to the

shared bus. As in the token ring, the terminal holding the

token has momentary control of the medium. In the bus

configuration, however, the terminals are connected parallel

to the medium. Thus once a terminal transmits the token, its

signal Is received by all terminals. Unlike the ring, for

token bus operation, terminal (I) does not have to be

physically adjacent to terminal (I+1) in order to transmit

In that sequence. Hence, a token bus behaves like a logical

ring.

Performance results cited above for token ring are

appropriate for the token bus case, If It operates as a

logical ring. However, now the propagation delay represents

the total latency for a round-trip around the logical ring.

This value may be larger than for the token ring since we

now make the delay from one end of the bus to the other,

(worst case) plus the time for a terminal Interface device

to process the signal. DeMoraes and Rubin's formulas (1) and

(12) In (32] for token ring and token bus respectively, are

Identical to Bux's result except for notation. Figures 4-2,

4-3, and 4-4 contain comparative results for token bus and

token ring. The result for a token bus that behaves like a

logical ring is repeated from the previous section. That

delay formula Is:
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pE(Tp I (1 - P/S)
T-- ------------- - E[Tp] -+ -----

2(1 p p)E(Tp] 2(1 - p 2

where:

S =number of connected stations,

P =XE(Tp], and

T =round-trip propagation delay.
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Figure 4-3. Average Message Delay vs. Throughput for
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4.5. Slotted Ring

4.5.1. Introduction

In the type of slotted ring studied by Bux (25], a constant

number of fixed-length slots continuously circulate around

the ring. A full/empty indicator in the slot header is used

to signal the state of a slot. Any ready station occupies

the first empty slot by setting the full/empty indicator to

"fullo, and places its data into the slot. When the sender

receives back the occupied slot, it changes the indicator

back to "empty". Several slotted ring models are developed

and evaluated in [24].

4.5.2. Model Assumptions

Usually, the slots in local rings are short, which means

that a packet or message has to be transmitted using several

slots. Packets queued at a station are served in sequence

for a short time quantum At, which corresponds to the slot

length. On the average, packets are usually at least ten

times longer that the slot. Bux further adequately

justifies in [25] key assumptions that led to the results

presented here. A most critical one is that the ring

bandwidth can be fully utilized. This means he assumes for

simplicity that the following relation holds among ring

latency T, transmission rate v, slot length Lh and Ld
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(length of header and data), and the number of slots a:

Tv = a(Lh + Ld).

Thus Bux assumes that the ring latency-times transmission

rate equals number of slots times slot length.

Comparative results are in figure 4-2. The simple expression

for the mean delay is:

2 T
T = ----- E[Tp] + -.

I -p 2

4.6. Ordered Access Bus

4.6.1. Introduction

The model described here for the ordered access bus approach

is again due to Bux [25], and applicable in a star

configuration since the star is known to have a short, fast

bus to which users either contend for, or are polled to gain

access. Information transmission occurs in variable-length

frames. A controller provides start flags at appropriate

time Intervals which signal the beginning of a frame. The

frame is divided into a request slot and an arbitrary number

of packets. In the version of multilevel multiple-access

(MLMA) analyzed In (25], every station attached to the bus

owns one bit within the request slot. By setting its
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private bit, a station Indicates that It wants to transmit a

packet within this frame. At the end of the request cycle,

all stations know which of the stations will make use of

this frame. The transmission sequence is given by a

priority assignment known to all stations.

4.6.2. Model Assumptions

The bus is modeled as a single-server facility. Newly

generated packets arriving during the current frame must

wait until the new frame starts for transmission. To ensure

that all stations know the entries made In the request slot,

the scheduling time Ts may have to be significantly longer

than the pure transmission time of the request slot. In

Bux's version, Ts equals twice the time needed to transmit S

bits plus the propagation delay T. The underlying assumption

of his model Is that the distance between two stations

transmitting In succession Is uniformly distributed between

zero and the maximum bus length. The appendix of (25]

contains the derivation of the mean transfer time T, and

comparative results are at figure 4-2. The delay formula Is:

p'(E[Tp 2 ] + TE[Tp] + T
2/3) T

T +-------------------------- E[Tp] + -
2(l p')(E[Tp] + T/2) 2

(3 - P') Ts-
- -------- ---
(I - P') 2

k. * gs V
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whe re:

P" = X(E[Tp) + T/21, and

Ts = mean scheduling time.

4.7. Comments on the Star Configuration Access Methods

The star configuration may be Implemented using various

access schemes. The fact that the star configuration exists

In a network may be more of a consequence of the access

protocol rather than explicit star design. For example, the

classic polling of attached terminals may be accomplished In

a logical *star" arrangement with the host/polling computer

as the hub. Terminal response times and delay formulas for

polling may be found in 134) and 135), for example.

As Indicated earlier, the ordered access configuration MLMA

may be applied to the short-bus (star) topology of figure

3-3. Delay calculations can be done by using the equation

presented in section 4.6, for the Ordered Access Bus.

A detailed study of the star topology addressing different

access protocols with emphasis on network performance, was

conducted by Kamal and reported In (36].

Finally, Anthony Acampora, C. D. Tsao, and M. Hluchyj in

(37] and (38] discuss a new local area network using a

centralized bus. Although explicit delay formulations were

mJI
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not included in their articles, the Intent of their

technology (based on DATAKIT packet switching [39]) Is to

combine the advantages of bus, ring and star architectures,

avoiding the disadvantages of each.

4.8. Effect of Propagation Delay and Transmission Rate on

Performance

In analyzing local network performance, according to William

Stallings (401, the two most useful parameters are the data

rate (R), of the medium, and the average signal propagation

delay (D), between stations on the network. In fact, it is

the product R x D that Is the single most Important

parameter for determining the performance of a local

network. (The data rate times the delay product equals the

length of the transmission medium In bits.) The length of

the medium In bits compared to the length of the typical

packet ir usually denoted by a:

a = (R x D)/L = Propagation time/Transmission time.

The maximum possible utilization of a network can be

expressed as the ratio of total throughput of the system to

the capacity or the bandwidth:
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U = throughput/R

= (L/(propagatlon + transmission time))/R

= (L/(D + L/R))/R

= 1/(1 + a )

Thus we can clearly see that a determines an upper bound on

the utilization of a local network, regardless of the medium

access protocol used. In particular, Stallings' throughput

results for various protocol access methods are summarized

below as t40]:

Token Ring and Token Bus

S = I/M1 + a/N), a < I

S = I/(a(I + I/N)), a ) I

N = number of stations.

CSMA/CD

S = IM{( + 2a(I - A)/,

A = Probability that exactly one station

transmits In a slot.

So in terms of network performance at high speeds (such as

those possible via optical fiber technology), the limiting

value is reached as a result of adjusting to ensure the

acceptable value of a. Since a = RxD/L, to keep It constant,

If the rate is to Increase, the propagation delay D must be

decreased (shorten the medium or use a "better" physical

medium), or the packet length L must Increase. Increasing L

could lead to greater Ineffictencies if doing so results in

a large number of partially filled packets [40].
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Figure 4-5 depicts the relationship of throughput versus

offered load as a function of a, independent of access

protocol. In (41], Bart Stucks develops expressions for the

maximum mean throughput rates for various LAN access

schemes. Figure 4-6 compares delay versus throughput for

polling and CSMA/CD given various values of a [27]. Figure

4-7 shows normalized throughput as a function of a for

various numbers of stations (N). And finally, figure 4-8

shows simulation results for maximum potential data rates

for the most popular LAN protocols [40].

1.0 a-0

0.9 a a 0.1

o.5 a=1

0.1 a 10
0 1 1 -1i

0.1 0.5 0.9 1.0

Offered Load

Figure 4-5. Throughput vs. Offered Load.
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Figure 4-6. Mean Delay Vs. Throughput: Polling and CSKA/CD.
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Figure 4-7. Throughput as a Function of a for Token Passing

and CSMA/CD.
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4.9. General Results for Other Network Approaches

Other more general approaches to local area network

implementations are summarized below. These include packet

switching using partially connected mesh topologies, circuit

switching, and frequency division multiplexed (FDM)

switching, or Its optical equivalent, wave division

multiplexed (WDM) switching.

Packet Switchino on PartiallX Connected Mesh Networks:

SM Xi E(Tp)

T Z --- - -

1=1 Y I - XiE(T P )

where:

k i = flow on link w'1, and

y = total offered traffic.

T = E(Tp) + Time Awaiting Permission.

Fast Packet Switching:

T = E(Tp) + Intermediate Node Switching Delay.

TDM Switching:

Basically, the same as slotted ring.

FDMSwltching:

Fixed allocated resources.
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5. SPIRAL NETWORK DESCRIPTION

5.1. Architecture

The minimum spiral network contains four modules of four

computer nodes each for a total of 16 nodes. A module is

formed by fully connecting four nodes. An internal base 4

numbering scheme is used throughout the spiral network,

regardless of size. These internal base four numbers are the

basis upon which the self-routing algorithm is built, and

therefore, form the heart of our fault tolerance strategy.

0 1 4 5 9 i21-

6I0 3 14, 7I1

Figure 5-1. Minimum Four Module Spiral Network.
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Figure 5-1 shows the minimum fo.r module, 16 node spiral

network. Actually, the mlnimum four module spiral network

is better displayed in figure 5-2, except in that

configuration, the six pair of links used to expand the

network to any desired size are not obvious. Spiral is

expanded by first fully connecting, in groups of four, the

nodes to be added. These nodes are assigned the next

consecutive base 4 numbers available beyond the highest base

4 numbered node In the current spiral network. Then this

new module is brought into the existing topological

structure by altering the six pair of links shown in figure

5-1. Figure 5-3 shows the result of adding a single module

to the minimum four module topology of figure 5-1. Figures

I Figure 5-2. Alternate Forum of Minimum Spiral Network.

h ~~ 1 4-~ 5 8r -:t. 12 1-3'%.~N.'>,~% W
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Figure 5-3. Five Module Spiral Network.

5-4 through 5-8 depict 7, 8, 11, 13, and 14 module spiral

networks. Notice in each case the six pair of links

resulting from the expansion. Clearly, as more modules are

added, the ease in expanding the network becomes more

evident since the six pair of links become more pronounced.

Close examination of figures 5-7 and 5-8 (the 13 and 14

module cases) reveals that as the spiral network grows,

there is a pool of modules totally unaffected by the

addition of new modules. The significance in this point is

that the network can be expanded quite easily by temporarily

disabling nodes directly attached to the sir pair of links.

-p ~t~~MK~CC &i
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a). Seven Module Spiral Network.

b). Threading Pattern.

Figure 5-4. Seven Module Spiral Network and Threading

Pattern.
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Figure 5-5. Eight Module Spiral Network and Threading

Pattern.
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F 5

a

Figure 5-8. Fourteen Module Spiral Network.
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All other nodes continue operation as usual even as the

topology is being expanded. This last point is one of the

major attributes of the spiral topology. When expanding any

of the four traditional topologies, not only is the overall

network affected during the expansion, routing and

theoretical limits must also be altered. These alterations

are usually at the expense of temporary inoperability of the

network.

In the spiral connectivity scheme, every third module Is

threaded together top and bottom in a circular fashion. The

process of bringing new modules into an existing topology is

akin to adding an element into a doubly linked circular

list. Both nodes on the front end of each module are

connected to the nodes on the rear side of its link module.

This threading pattern continues until the last pair of

front links loops back around and connects with the rear

side of the front end module. Figures 5-9 and 5-10 repeat

the network threading patterns for the seven module (28

node) and eight module (32 node) spiral networks. These

threading patterns reflect the order in which modules are

encountered as a message proceeds towards its destination.

The threading pattern is also a quick check that all modules

are reachable.

N%
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5 6 7

a). Seven Nodule Threading Pattern.

0-13-12-25-24:-9-8-21-20-5-4-17-16-

b). Unwound Spirals.

Figure 5-9. Module Threading Pattern and Spirals.

3 4 5 6 7 8

Figure 5-10. Eight Nodule Network Threading Pattern.I
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Figure 5-9(b) shows the two unwound top and bottom spirals

for the seven module network. Evident here are the four

totally disjoint (nonoverlapping) paths that exist between

any source-destination pair. In any size spiral network that

has no failed nodes or links, messages can travel along the

top spiral right, top spiral left, bottom spiral right, or

bottom spiral left. The Preprocessing Algorithm at the

source node determines which of these four routes is the

shortest path to destination. Spiral and direction flags (SF

and DF) are then initialized, and used by the self-routing

algorithm for on-the-fly routing from source to destination.

The aforementioned architecture's connectivity scheme

remains fixed, no matter the desired size of the resulting

spiral network. Since every third module is threaded

together to form the desired spiral network, the total

number of resulting modules must not be an integer multiple

of three. When the spiral connectivity algorithm Is applici

to modules (m) whose total number is directly divisible by

three, the resulting topology is a network that partitions

into three subnets of m/3 modules each. This special

attribute of the connectivity algorithm leads to a key

physical security advantage detailed further in section 5.3

of this chapter.

I
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5.2. Typical Node Configuration

5.2.1. Physical Characteristics

All nodes in a spiral network are the same, although they

need not be. The functions performed for error free

routing, and routing when failed links or nodes exist, are

also identical. None of the nodes is designated the

amaster" to other "slave" nodes. Further, no node maintains

connectivity data for the entire network. The absence of

the need to maintain such information, means there is no

delay associated with disseminating update status

information to the other nodes. Each node maintains status

information on the nodes to which it is directly connected

only.

Figure 5-11 is a simple graphic representation of a typical

spiral topology node.

Figure 5-11. Typical Spiral Node.
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The nodes are connected by four full duplex links. Three of

the links connect to the other three nodes that form the

module. The forth connection is the link node that extends

to the next (or previous) module, as depicted in the module

threading pattern, (See figure 5-9, for example, for the

threading pattern of the seven module, 28 node network.) All

links operate at a common speed, which can be set as

necessary to achieve the desired performance level.

5.2.2. Input Configuration of a Spiral Node

Figure 5-12 represents the message processing procedure

followed during a typical message arrival state. Traffic

arriving on each of the four links is composed of transient

messages on their way towards final destinations, and newly

arriving messages to the network.

RPA,

A-7,

Figure 5-12. Input Configuration of a Spiral Node.

I -
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Depending on current busy state of the node, these messages

may be queued for processing. Of course if the link speeds

are set for extremely fast processing, then these queues

should be extremely short. A typical message has either

reached its destination module, or must be sent on to the

next link module in its path. If the current module is the

destination, then the Rapid Processing Algorithm (RPA) gates

that message to the final destination node of that module,

if the current node Is not the final destination node. If

the current module is not the final destination, then the

Rapid Processing Algorithm gates the message to the

appropriate link node. This link node is found by checking

the spiral-destinatlon flag pair. Additional routing

algorithm details are found in chapter 6.

5.2.3. Output Configuration of a Spiral Node

Figure 5-13 shows the output side of a typical node.
Whether a message is transient or a new arrival makes no

difference to the Rapid Processing Algorithm. All messages

are gated to the appropriate output link from the typical

node. The choice of which link to use is governed by

whether the current module is the destination module for the

message, or only an Intermediate module along the message's

path. If the Rapid Processing Algorithm determines that one

(or more) of the output links/nodes has failed, the spiral

or direction flag is complemented. If the failed link/node
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is the final destination, a message of non-delivery due to

failure, can be sent back to the sending node. If the

failed link/node is an intermediate one in the path of the

message, then the new SFDF pair is used to automatically

adjust the path of the message around the failure. See

chapter 6 for additional details on routing with and without

failures in the network.

Figure 5-13. Output Configuration of a Spiral Node.



71

5.3. Key Spiral Network Features

The six most important direct consequences of the spiral

topology are 1) ease of expansion; 2) fast, on-the-fly

self-routing; 3) extremely high tolerance to faults; 4)

increased network security; 5) potential for the total

elimination of store and forward transmission due to routing

decision delays; and 6) rendering the maximum path length

issue moot.

Perhaps the three most significant features are its ease of

expansion, fast, on-the-fly self-routing attribute, and

spiral's extremely high tolerance to failed links or nodes

th 'oughout the network. These two latter features are

further amplified upon in chapter 6.

The ease at which the spiral network can be altered, whether

to make larger or smaller networks, Is evident from the

previous description of the spiral architecture. Yet another

unique feature of spiral has significant security

ramifications.

The construction and operation of the spiral topology Is the

same regardless of network size, with only one constraint.

We contend, however, that this constraint Is a major

security attribute. Because- of our connectivity scheme

which directly links every third module, the number of
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mod. !s in the spiral topology must not be an integer

multiple of three. When the spiral connectivity pattern is

applied to modules whose number is a multiple of three, the

network partitions into three separate but equal subnets of

total-nodes/3 nodes each. There is no possible way for the

three subnets to interact. For example, figure 5-14(a)

shows a 12 module, 48 node network using the spiral

connectivity pattern. In figure 5-15(a) Is a 15 module, 60

node network connected using the spiral connectivity

algorithm. Upon close examination of the resulting network

threading patterns of figures 5-14(b) and 5-i5(b), one

notices that the 12 modules are completely partitioned Into

three separate subnets of four modules (16 nodes) each. The

15 modules are partitioned into three subnets of 5 modules

(20 nodes) each. That is, we now have the case of the

minimum four module (16 node) network of figure 5-1

duplicated three times, and the five module (20 node)

network of figure 5-3 duplicated three times. If 21 modules

are connected, then the network partitions into three

subnets of seven modules (28 nodes) each, and thus

duplicates the seven module network of figure 5-4. And

herein lies the significant security implication.

In environments where highly sensitive and classified nodes

operate in conjunction with unclassified, routine common

user nodes, the ability to temporarily partition the network

with ease may be a major network design criterion. If there

5 



73

A- \\

/ \

//

/) TredngPaten

a). Twlve Mdules

Figue 514. wele MduleNetork nd hredlngPatern



~74

k/Iv \\

. \

,- -i I
II

/ °\
•/

\ i - /

"-- .

- /-
* \ **4



75

is a recurring need for added, or assured security, whereby

only a portion of the total nodes desire to interact among

themselves, then the network planners can identify these

.super nodes" at network design time. They then can place

these nodes in the proper logical positions within a fully

connected spiral network. Operation proceeds as normal until

the temporary need for added security arises. At that time,

by increasing the number of modules to the next closest

multiple of three, the network partitions Into the three

subnets. One of these will be the subnet consisting of the

fsuper nodes" only. The two remaining lower priority subnets

still have the ability to communicate with other nodes on

their subnet. This temporary network expansion to the

nearest multiple of three is simple, and fairly inexpensive.

The temporary expansion need not involve the expense of

acquiring standby hardware. A single, existing computer can

be used to simulate the additional nodes. When the temporary

need expires, the network can be returned to its original

configuration by deleting the temporary artificial nodes.

Recall from section 5.1 of this chapter that the expansion

can occur without bringing the network down.. A broadcast

message could be sent to each node advising of the impending

partitioning Into subnets.

The next spiral network feature stems from the use of fiber

optic technology and the communications industry's plans to

evolve to an Integrated Services Digital Network (chapter
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2).

To take advantage of the tremendous speed associated with

fiber optics transmission using our spiral topology, the

network manager or designer chooses a high enough link speed

so that the mean queue length of the spiral network is very

small at steady state. While queue buildup is unavoidable,

the self-routing algorithm precludes the need to store

messages while routing decisions are being make, and

sufficiently high link speeds minimize the need to queue the

message for transmission on the outgoing link. With current

topologies using optical transmissions to transport

messages, optical-to-electrical conversion of messages is

required before an intermediate message can be stored.

These conversions are necessitated by the absence of viable

optical memory units. Once a routing decision for the

message has been made, the message must then be converted

back to Its optical format for further transmission.

Spiral's on-the-fly routing attribute precludes the need to

store messages at Intermediate nodes for routing, which

means there will be no need to convert the message from

optical-to-electrical and vice versa. As expected, in this

scenario, average link utilization may be drastically

reduced over the store and forward mode of operation. But a

lower link utilization Is a reasonable tradeoff If speed is

Indeed vital. Speed is extremely vital for voice and

realtime video traffic In an ISDN environment.
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Further, by using the spiral topology and !ts Inherent on-

the-fly routing attribute, network planners will be better

equipped to decide whether or not packet switching is more

suitable than circuit switching. In the past, circuit

switching was used to ensure uninterrupted transmission of

critical, realtime traffic. The path established from

source to destination for the circuit was completely

dedicated to users for the entire duration of the

transmission. With spiral, and the careful selection of

link speeds, the overall network throughput and efficiency

may be increased by using packet switching, or fast packet

switching.

Finally, since the network is self-routing and requires no

Intermediate message storage while the routing decision Is

being made, the traditional concept of maximum path length

becomes a moot Issue. To a great extent, path length

determines network response time for a message. With the

spiral topology, If simulation analysis yields a response

time that Is too high due to long paths or queues (or

whatever the reason), one simply Increases link speed to the

point where the queues become shorter, and the response time

Is again bearable. Once this fine tuning using a simulation

or analytical model yields an acceptable response time,

network analysts can then implement that configuration.

-
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5.4. Simulation Model Summary

The model used to simulate the spiral computer network

topology contains approximately 2700 lines of C program

source code (Appendix E). Spiral networks containing 4 to

20 modules (16 to 80 nodes) were established and evaluated,

using 0, 1, 2, and 3 failed nodes. Also, the failure of

complete modules was analyzed. In every case, the common

:ink speed was 19200 bits per second; 4000 messages were

delivered to reach a simulated steady state condition; and

4000 messages were then delivered and used to gather

statistics. Appendix B contains more details on the design

and implementation of this simulation model. And Appendix D

contains the Summary of Simulation Results for each of the

simulation runs.

The computer model used to gather statistics for comparison

simulates the spiral network topology as described in the

current chapter. The performance of the topology was

evaluated using established techniques that apply to

networks whose messages follow a Poisson arr-ival pattern,

with exponentially distributed lengths. Analytical results

including mean queue length, mean and maximum path length,

mean network response time, and system utilization, were

compared to the values obtained through simulation.

I,
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6. ROUTING IN A SPIRAL NETWORK

6.1. Introduction

The next sections discuss how the spiral routing algorithm

transports messages from source to destination nodes. These

sections include examples of routing with and without

failures. The failure scenarios range from a single

failure, to the case where some nodes are not reachable.

All examples use the seven module, 28 node spiral topology

for convenience. Also, the same source-destination pair is

assumed.

6.2. The Routing Algorithm

The spiral network connectivity pattern generates two

separate top and bottom spirals along which messages travel

to their destination. Figures 6-1(a) and (b) duplicate the

network threading and unwound spiral patterns for the seven

module, 28 node network. While this discussion assumes a

seven module, 28 node network, It applies to any size spiral

network. Messages whose destination address ends in "00 or

"10, base 4, are routed along the top spiral. Those ending

In "2" or "3m use the bottom spiral. These four

possibilities led to our selection and use of the base 4

numbering system to label - nodes. The Preprocessing

Algorithm at the source node determines the optimum path to
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7I

a). Seven Module Network Threading Pattern.

0-13-12-25-24-9-8-21-20-5-4- 17- 16-1

b). Unwound Spirals.

Figure 6-1. Threading and Unwound Spiral Patterns.

destination by finding the spiral path which 'contains the

fewest Intermediated nodes, whether to the right or left. A

one bit spiral flag (SF) and one bit direction flag (DF) are

then initialized by the Preprocessing Algorithm before the

message enters the network. SFDF pairs have the following

meaning: 00 sends the message along the top sp'Iral to the

right; 01 uses top spiral left; 10 sends It bottom spiral
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right; and II uses the bottom spiral left. These flags are

attached to the message header, and remain unchanged as long

as no faulty links or nodes are encountered. When a message

arrives at an intermediate node, the Rapid Processing

Algorithm places it on the proper output queue from that

node, based on the SFDF pair value. If the selected output

queue In the message's path Is connected to a failed link or

node, then the Rapid Processing Algorithm complements the

SF. If the SF has already been complemented within the

current module (as indicated by a module spiral change

counter), then a spiral change has already been attempted.

So the DF Is complemented. This case suggests that failures

in the current direction have occurred along both the top

and bottom spirals at or near the same point, such that

these spirals are completely severed In the current

direction. For if this failure pattern did not exist, then

the message would advance at least one node closer to Its

destination. Making such an advance would move the message

past the point of failure on the other spiral, and allow it

to continue on towards the final destination.

After the DF Is changed, the message then continues on

towards its destination in the opposite direction. Thus,

based on the pattern of failed nodes, it Is possible for a

message to retrace its steps back through the source node as

it seeks out the path In the opposite direction. The routing

procedure must check to ensure messages do not oscillate

MUM?&
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between spirals, or alternate directions indefinitely. Fault

tolerance is inherent in the algorithm since altering the

SFDF pair is guaranteed to find a path to destination if one

exists, regardless of the pattern of failure(s).

The routing algorithm used in our spiral topology is

summarized as follows:

1. If the message is a new arrival to the network, the

spiral and direction flags are initialized by the

Preprocessing Algorithm at the source node.

2. The message arrives at a node and is checked to

determine if it has reached its destination module. If so,

it is gated by the Rapid Processing Algorithm to the

destination node within the current module.

3. If this is not the destination module, the message Is

sent to its gateway node within the current module if that

node is operating. The last digit of this gateway node's

address is SFDF, base 4. Go to step #7.

4. If the gateway node has failed and the SF has not been

changed while in the current module, then SF Is

complemented. Return to step #3.

5. If t 'e gateway node has failed, the SF has already been
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changed within the current module, and the DF has not, then

complement the DF. Return to step #3.

6. If the gateway node has failed, the SF has already been

changed within the current module, the DF has already been

changed, and the message has returned to the original source

module twice, then there Is no path to the destination. End

of trip for this message. (The algorithm terminates for

this message. Take appropriate action to notify source node

of inability to deliver.)

7. Once at the gateway node, gate the message to the module

in its route path. Return to step #2.

6.3. Examples of How the Routing Algorithm Operates

All examples used In this section were chosen to emphasize

spiral's high tolerance to failure(s). While the response

time is increased as more failures occur (to a point, then

the response time again decreases), our primary concern Is

confirmation that the spiral topology still functions In the

case of failures. Response time Is addressed In more detail

In the next chapter.

.
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Consider the seven module, 28 node network repeated in

figure 6-2. Assume no failures, and that we are sending a

message from source node 20 (110 base 4), to destination

node 27 (123 base 4). The Preprocessing Algorithm

determines the optimum path and sets the SFDF pair to 11

(bottom spiral left). The route chosen by the algorithm will

be 110 l) 113 -> 22 -> 23 -> 122 -) 123.

KE~4 1 01 .L 2D 2 (0011 (1O01~0 N~~u -

1 5 1- "1 9 2 2" 3 2 6

Figure 6-2. Seven Module Spiral Network, No Failures.
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Next, the same source-destination pair IE assumed, bu! now

node 11 (23, base 4) has failed. Refer to figure 6-3 for

this example. The route now chosen by the algorithr is 110

'6 13 ->22 -) 21 -)120 -)123.

42 16 ' -02, 2
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In this next example, nodes 9 and 11 have failed (nodes 21

and 23, base 4). We again assume the same S-D pair of 20 -

27. From figure 6-4, we see that the path chosen by the

Routing Algorithm is 110 -> 113 -> 22 -> 113 -> 112 -> 13 ->

12 -> 103 -> 102 -) 03 -) 02 -> 33 -> 32 -) 123. Notice in

this case, both spirals are cut off in the direction of the

shortest path. The algorithm adjusts on-the-fly by

complementing both SF and DF. The result is the message

retracing Its steps back through the source module In the

opposite direction. However, the destination was still

reachable.

Figure 6-4. Two Node Sprral Network Failure.
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Next, we start with the last example where both spirals were

cut off in the same direction, and additionally kill node

03. Again, we use the source-destination pair 20 - 27. The

path chosen can be traced through figure 6-5 as 110 -> 113

-> 22 -) 113 -> 112 -) 13 -> 12 -) 103 -) 102 -> 100 -> 01

-) 00 -> 31 -) 30 -) 121 -> 123. Again, note that the

destination is still reachable.

failres 1e also inetoal;il nd 1 rfrt

Figure 6-. orrt e icoia rpiresetton). Inailast

detnto Is unechbe Inadtont lpeiu

figure 6-. the icoildeSpresettion). Inaisu.

case, the self-rcutng algorith m results in tue following

path: 110 -> 113 -) 22 -> 113 -> 112 -> 13 -> 12 -> 103 ->
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102 -> 100 -> 101 -> 10 -> II -> 110. But now, both spirals

have been attempted In both directions, and the message has

returned to the source module (#6) twice. The algorithm

recognized that the destination is indeed unreachable, and

therefore terminated at step #6. Why should the algorithm

allow the message to return to the source module twice?

Because one return trip is possible due to direction change,

as occurred In the scenario preceding this current example.

If node 00 Instead of 01 had failed (figure 6-7), then the

destination would still be reachable, since a spiral change

would again occur. In that case, the path would be 110 ->

113-> 22 -> 113 -> 112 -> 13 -) 12 -> 103 -> 1C2 -> 100 ->

01 -> 02 -> 33 -> 32 -> 123.

FIgure 6-6. Unreachable Destination Example.
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Figure 6-7. Destination Reachable After Several Changes.

6.4. Summary

In each of the above examples, the resulting path chosen by

the algorithm was longer than the optimum one of the error

free case. As mentioned earlier, the longer path means

increased delay for the message. However, the achievement

of high tolerance to failures anywhere In the network is our

primary concern. Further, link speeds are arbitrarily

selected to achieve specified levels of performance.

Network planners need only select a higher link speed for

the error free network to compensate for the Increased path

length resulting from severe node or module failures.

Finally, for any source-destination pair under error free

conditions, the algorithm always selects the optimum path.

In the presence'of errors, it a path exists between any two

nodes, the algorithm is guaranteed to find it.
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7. ANALYSIS OF THE ERROR FREE SPIRAL NETWORK TOPOLOGY

7.1. Introduction

This chapter's primary emphasis Is on reporting results that

apply to the error free spiral network topology. When

failed nodes exist in a spiral network, closed form

algebraic results similar to the ones reported In this

chapter, are either impossible, or extremely difficult to

derive. For example, the impact of failures on the mean

path length is dependent on the location of those failures.

Two arbitrary node failures on opposite spirals that are not

directly opposite each other, have less impact on the mean

path length than two failures that are opposite each other.

In the latter case, both top and bottom spirals are cut off,

causing a message to reverse its direction and retrace the

path traversed to that point. This reversal by messages that

need to advance beyond the point of the two failures will

result in a longer mean path. Even if a closed form

expression for the mean path length could be found that

compensates for each possible failure pattern, the resulting

expression would be extremely complicated, and add little to

the overall understanding of the network's performance. The

combinations of failure patterns are numerous, because the

number of failures can range-from I to as many nodes as

there are In the network. Even if only two or three

.. ,I I .
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remaining good nodes can reach each other, theoretically,

there still is a mean path length.

Therefore, the approach to analyzing the spiral topology

when nodes have failed is to compare the results for no

failures to the same size spiral network containing 1, 2, or

3 failures. We also analyze the impact of the failure of a

single, or several modules, on the overall network. A

thorough analysis of the spiral network topology when

arbitrary nodes and complete modules have failed, is found

In the next chapter.

Theoretical results in this current chapter are compared to

those obtained from simulation. The simulation model used

to generate these comparative results contains approximately

2700 lines of C program source code (Appendix E). Spiral

networks containing 4 to 20 modules (16 to 80 nodes) were

established and evaluated. In every case, the common link

speed was 19200 bits per second; 4000 messages were

delivered to reach a simulated steady state condition; and

4000 messages were used to gather statistics. Appendix B

contains more details on the design and implementation of

this simulation model. And Appendix D contains the Summary

of Simulation Results for each run.
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7.2. Theorem on Disjoint Paths

THEOREM 1: In any size spiral network with no failed nodes

or links, there exists four disjoint paths between any

source-destination pair.

Proof: In the spiral connectivity scheme, every third

module is threaded together top and bottom In a circular

fashion. Nodes on the front end of each module are connected

to the nodes on the rear side of their link module. This

pattern results in two spirals of equal length: one on top

and the other on bottom. Since these spirals are circular,

the four disjoint paths that result are I) top spiral

traveling to the right; 2) top spiral left; 3) bottom spiral

right; and 4) bottom spiral left.

Q.E.D.

As an example, consider the seven module, 28-node network

(figure 5-4). Using the source-destination pair 5 -> 18, the

four disjoint paths using base 10 numbers are:

5 ) 20 ) 21 ) 8 > 9 > 24 > 25 ) 12 > 13 > 0 > I > 16 > 18

5 > 7 > 22 ) 23 > 10 ) 11 > 26 > 27 ) 14 > 15 > 2 > 3 > 18

5 > 4 > 17 ) 18

5 ) 6 ) 19 > 18.

it W1
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7.3. Theorem on Maximum Path Length

THEOREM 2: The maximum path length in any size spiral

network having no failed nodes or links, measured in hops

under the shortest path algorithm, Is equivalent to the

number of modules contained in that network.

Proof: Define the following variables:

m = number of modules in the network,

n = number of nodes in the network,

s = number of nodes on each of the two spirals, and

h = maximum number of hops between the most distant

source-destination pair.

Since the minimum four module, 16 node spiral network is

expanded by modules of four nodes each, n = 4 * m. Further,

since there are two equal disjoint spirals in a network, s =

n/2. Consider one spiral. Since 4 * m is always even, s =

(4 * m)/2 is also even. The maximum number of hops, h,

between any two most distant of 2m nodes Is h = (2m)/2 = m.

For if h were greater than (2m)/2, then choosing to send the

message In the opposite direction along this spiral results

In a path shorter than h = m. Even If the source-destination

nodes are on opposite spirals, direct connection to the

appropriate link node on the other spiral does.not lengthen

the maximum path. Thus
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S n,'2 n 4 * m

2 2 4 4

Q.E.D.

7.3.1. Analysis of Maximum Path Length

The following analysis compares theorem 2's formula results

to those of the simulation model. In the model, if the path

of the most recently delivered message is lcnger than any

previous path, then this length becomes the updated maximum

path value.

Case I: m = 4

theorem: h = m = 4.

simulation: h = 4.

Case 2: m = 5

theorem: h = m = 5.

simulation: h = 5.

Case 3: m = 7

theorem: h = m = 7.

simulation: h = 7.

Case 4: m = 8

theorem: h = m = 8.

simulation: h = 8.

{N
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Case 5: m = 10

theorem: h = m = 10.

simulation: h = 10.

Case 6: m = 11

theorem: h = m = II.

simulation: h = i .

Case 7: m = 13

theorem: h = m = 13.

simulation: h = 13.

Case 8: m = 14

theorem: h = m = 14.

simulation: h = 14.

Summary: When comparing the theoretical result of maximum

path length to that obtained from the simulation model, the

results are always identical. This is true no matter the

size of the spiral network under study.
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7.4. Theorem on Traffic Between any Source-Destination Pair

Theorem 3: Let 'Y j messages per second represent the average

amount of external traffic entering node (I) and destined

for node (j). Assuming that each node sends this new

traffic to all other nodes with equal probability, then for

any size spiral network with or without failed nodes,

4(n - f)
V..j =------------- 

-n(n-I)IAT

Where:

n = the number of nodes in the network,

IAT = mean time (in seconds) between arrival of external

messages to each of the four links at node (1), and

f = number of failed nodes in the spiral network.

Proof (this result Is used In sections 7.6 and 7.10):

External messages arrive at each link with frequency I/IAT.

Since there are four links attached to each node, the

arriv I rate of external messages to each node is 4/IAT.

Further, since each node sends to all other nodes with equal

probability, the proportion of this new traffic sent to each

node Is i/(n-1). When there are no failures, the average

amount of newly generated traffic sent from source node (i)

to destination node (j) per second is:

4 1 4
Y.. --- * ---- ------

IAT n-i (IAT)(n-i)

.. .b ..- . .
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In the spiral topology, there is no global node status

information, thus good nodes will send messages to failed

ones, not knowing that the destination has failed. However,

failed nodes send no messages. Therefore (n-f)/n represents

the proportional impact that failures have on externally

generated traffic. The reduction in external traffic as a

result of failures is I - (n - f)/n.

Incorporating the proportional impact of failures into the

above equation, we now get

4 n-f 4(n-f)
------- -- ---------(n-l)(IAT) n n(n-1)(IAT)

Q.E.D.

7.5. Theorem on Expected Average Link Traffic

7.5.1. Introduction

The previous theorem is concerned with the arrival of

external traffic to the four links that comprise a node, and

how that new traffic is distributed to each of the remaining

(n - 1) nodes. The next theorem addresses a single (one of

the four) arbitrary link at a node. The theorem result is

an expression for determining the expected average amount of

traffic that Is sent over any arbitrary link. That traffic

includes both newly generated external traffic and transient

messages.
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Theorem 4: Let X, messages per second represent the

expected average amount of newly generated and transient

traffic passed over an arbitrary link (i). Then in any size

spiral network which has no failed nodes or links,

I

i  - -+ .375g,IAT

where:

IAT =mean time (in sec-onds) between arrival of

external messages to each link, and

S= the average amount of transient traffic entering

any node.

7.5.2. Preliminary Discussion

If we start with some source node (I), then the traffic from

node (i) to directly connected node (j) consists of new

external traffic that enters the network at node (i)

destined for (j), plus transient traffic that uses the link

between nodes (i) and (j) as an intermediate hop. When this

combined traffic enters node (j), it is joined by new

traffic that enters the network at node (j), plus a portion

of the transient traffic that enters node (J) on the other

links tied into node (j). A portion of this new total

amount of traffic then passes over the next link to node

(k), where the process of combining new external and

transient traffic Is repeated. This analysis suggests that
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tne average amount of traffic on an arbitrary path Increases

proportional to the path length. But since every node in a

spiral network falls near the end of the path from some

source node, we would expect this proportional increase in

traffic to be distributed uniformly throughout the network.

In the spiral topology, the path taken by an arbitrary

message is part of a tandem network that contains cross

links at each node. So while transient messages at each

node joins the flow of newly generated traffic, at some

point along the path, we assume that an amount of transient

traffic equivalent to that which joined the path, will again

leave, and become part of some other path In the network.

Therefore, the reasonable assumption is made that the

average transient traffic (P) arriving at an arbitrary link

to Join newly generated messages is a constant. This

assumption and discussion of the behavior of queues in

tandem that merge with cross links parallels the analysis of

tandem queues In E42], where the assumption is made that

transient messages move into a path at some node, and then

leave that path at the next node.

There are four unique cases that must be analyzed when

considering the mean traffic over a link. These cases exist

because we have four links connected to each node. The

analysis that follows is based on a fully connected module,

using variables defined as foliows:

k i = expected mean traffic (in seconds) passed over
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any arbitrary link (1),

IAT = mean time (in seconds) between arrival of

external messages to each of the four links at a

node, and

= the average amount of transient traffic per

second entering any arbitrary node.

In each case analyzed, the solid lines with direction arrows

in figures 7-1 through 7-4, highlight the links that may

impact the traffic that helps form Xi. The broken lines are

included to complete the module connectivity. Also, in each

of the four cases that follows, three links (with direction

arrows in the figures) lead into the node, and one link

leads away from it. We arbitrarily choose node (1) as the

source node. The values of >2' X3, and X4 in figures 7-1

through 7-4 represent the traffic (in seconds) sent from

nodes (2), (3), and (4) respectively.

Case 1: Node (1) sends to node (4).

In this first case (figure 7-1), a portion of the transient

traffic p from the external link is joined by the new

traffic generated at the link feeding node (4) from node

(1). So the value of Xi is determined by the rate of newly

arriving messages to the node (1) to node (4) link, plus a

portion of the through traffic (. None of X2 or X3 is fed

to Xi , since traffic sent to nbde (4) from nodes (2) and (3)

uses the directly connected node (4) links. The amount of(3

L __ '.
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going to x, depends on how much terminates at node (1), and

how much is sent to nodes (2) and (3).

4
2' ----- 3

Figure 7-1. Node (1) Sends to Node (4).

Case 2: Node (1) Sends to Node (2).

In our second case, the value of xi is determined by the

rate of newly arriving messages to the link feeding node (2)

from node (1), plus the portion of the through traffic from

Figure 7-2. Node (1) Sends to Node (2).
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S(see figure 7-2). Again, none of >,3 or X.4 is fed to XJ

since traffic sent to node (2) from nodes (3) and (4) uses

the directly connected node (2) links. The amount of p

going to Xi depends on how much terminates at node (1), and

how much is sent to nodes (3) and (4).

Case 3: Node (1) Sends to Node (3).

Now, the value of k i is determined by the rate of newly

arriving messages to the link feeding node (3) from node

(1), plus the portion of the through traffic from P3(see

figure 7-3). As before, none of X2 or X4 is fed to k i, since

traffic sent to node (3) from nodes (2) and (4), uses the

directly connected node (3) links. The amount of p going to

Xi depends on how much terminates at node (1), and how much

is sent to nodes (2) and (4).

22

Figure 7-3. Node (1) Sends to Node (3).

p p *. .- ~ -~ c p S.-
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Case 4: Node (1) Sends to Distant Node.

4 X4X

Figure 7-4. Node (1) Sends to Distant Node.

In this final case, node (1) sends to a node that Is a part

of the directly connected next (or previous) module. The

value of Xi is now determined by the rate of newly arriving

messages to the link feeding the distant node from node (1),

plus the portion of traffic from X2, X3 and X4 (X2 =X3 =X4

= P). The amount of X2, X3, and X4 that helps to form X i Is

determined by whether or not node (1) is the final

destination node for a message sent from or through nodes

(2), (3), or (4).

We nov form mathematical representations of these four

cases, and combine them to conclude the proof of theorem 4.
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7.5.2. Proof of Theorem 4

Case 1: In this first case, P either terminates at node (1),

or is sent on to nodes (2), (3), or (4). therefore goes

to node (4), and thus helps form X,, with probability .25:

x= arrival rate of newly generated messages

+ portion of through traffic
I

= + [Probability( p goes to Xi)]p
IAT

1
(7.5.1) k i = --- + .25A.

IAT

Case 2: Again, p either terminates at node (1), or Is sent

on to nodes (2), (3), or (4). The probability of p helping

to form ki is .25 as before.

xi = arrival rate of newly generated messages

+ portion of through traffic

1
ki= --- + [Probability(p goes to ki)lp

IAT

1
(7.5.2) --- + .25P.

IAT

Case 3: This case is the same as the two previous ones: p

either terminates at node (1), or feeds nodes (2), (3), or

(4) with equal probability.

xi= arrival rate of newly generated messages

+ portion of through traffic
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+ [ Probability( p goes to k,)3
IAT

1
(7.5.3) -- + .25P.

1AT

Case 4: In this last case, X2 terminates at node (1) or

feeds x, X3 terminates at node (1) or feeds ki, and X4

terminates at node (1) or feeds K. Each of these

terminations occur with probability .5.

ki= arrival rate of newly generated messages

+ portion of through traffic

Xi + [Probability(X2 orX3  orX4  goes to ki )]p
IAT

1
-- +fIP( X2 ) +P( X3 ) +P(W 4  -- (kfl3 PX" 4

I AT

+~~~ 1.50)- (.)(.5(3)1

1

I AT

II

(7---4 + .2p).75) -- .7p).5

IAT IAT
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.75 .25
--- + ie75P -- + .1675P

IAT IA?

xi= 4+ .375P.
IAT

Q.E.D.
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7.5.3. Analysis of Expected Average Traffic

Table 7-1 contains analytical results obtained from applying

the formula in theorem 4 to various size spiral networks for

selected values of P. For each spiral network analyzed, the

overall system utilization was first found by ignoring

transient traffic ( P= 0). Then we assumed that transient

traffic joined newly arriving traffic at a rate of .05

messages per second (p = .05). The value for the arrival

rate of new messages (1/IAT) was also .05, since IAT = 20

seconds. The column in table 7-1 which reports theoretical

system utilization (pt) contains results obtained from

applying the formula to find Xi based on p and IAT.

Assuming the size of a newly arriving message is chosen from

an infinite population that Is distributed exponentially

with mean i/i bits per message, and that arrivals follow a

Poisson arrival rate with mean ki, a very good approximation

for p, at this point is the mean utilization for a single

link (based on xi calculated using theorem 4), multiplied by

the mean path length (Lm) as found in the simulation model

(i.e. pt = XiL /4C) 1423. Theorem 5 and analytical work In

section 7.8 lead to the exact expression for p1 . Section

7.8 also confirms the accuracy of the current approximation.

The last column in table 7-1 contains the7 measured

utilization found in the model, calculated as follows:

L . . . . . . . .. . . ..... .. .. . .'
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average time all links are busy
P =-------------------------------------------------total network time

Notice that without exception, wher transient traffic is

Ignored (O= 0), the theoretical utilization (p,) is closest

to the measured result (pm). Even a small amount of

transient traffic (Q = .05) causes theoretical utilization

to surpass the measured values. In concluding this analysis

based on the above theorem, without exception, the analysis

of theoretical versus simulation results confirm that

transient traffic can Indeed be ignored when calculating the

system utilization under the assumed conditions. The fact

that when 3 = 0, theoretical results are closest to

simulation values, supports the long accepted assumption

that for analyzing MM/I queues connected in tandem,

transient traffic can be ignored [42]. Ignoring transient

traffic Is possible because the rate at which transient

traffic flows into that tandem network equals the rate at

which It flows out of It. So while the formula in theorem 4

is a precise representation of the expected average traffic

arriving at an arbitrary link, a more simple procedure that

is just as accurate is to use the rate at which new messages

arrive at the links, Ignoring the transient traffic.
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Table 7.1. Average Traffic Result Comparisons.

modules 0x iPtP

.00 .05000 .04984
4 .04820

.05 .06875 .06e53

.00 .05000 .06043
5 .05890

.05 .06875 .08309

.00 .05000 .08078
7 .07972

.05 .06875 .11107

.00 .05000 .09060
8 .08849

.05 .06875 .12458

.00 .05000 .11166
10 .11286
.05 .06875 .15353

.00 .05000 .12308
11 .12104

.05 .06875 .16923

.00 .05000 .14425
113 .14673
.05 .06875 .19834

.00 .05000 .15312
14 .15060

.05 .06875 .21054

.00 .05000 .17561
16 .17136

.05 .06875 .24147

.00 .05000 .18580
17 .17796

.05 .06875 .25548

.00 .05000 .20473
19 .20226

.05 .06875 .28150

.00.05000 .21251
20 .21263

.05 .06875 .29220
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7.6. Theorem on Total One Way Link Traffic

7.6.1. Introduction

In the previous section, we presented as theorem 4 an

expression for calculating ki , the expected average amount

of external and transient traffic (in messages per second)

passed over any arbitrary link (i). If we form the sum of

all the one way %,'s in a network, then we arrive at the

total one way link traffic In that network. The next

theorem provides an alternate exact expression for finding

the total average one way link traffic. Theorem 5 will be

applied In sections 7.7 and 7.8.

Theorem 5: The total average one way link traffic (X) for

any size spiral network having no failed nodes or links, is

4 n -
S----- 5m-4 4 (7m-141-3) + (m-,21-1)) + mn),

IAT(n-i) 2 i=1 i=1

where:

IAT = mean time In seconds between arrival of

external messages to each link,

n = the total number of nodes in the network,

m = the total number of modules In the network

(m = n/4).

* '* * t ,.
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We now know from theorem 4 that transient traffic enterinc a

network of tandem queues can be ignored, since the flow rate

into that tandem link equals the flow rate out. Even if the

transient traffic was not ignored, on the average, it would

be constant, and thus could be removed from computations.

The theorem just presented as theorem 5 pertains to external

traffic only.

There are three types of links in any size spiral network:

Type I: Gateway Links - These links connect the

modules together to help form the top and bottom

spirals. Examination of any sze spiral network

topology quickly confirms that there are (n) Type I

links in each full-duplex spiral network. So the e

way total of Type I links is n/2.

Type II: Transient Links - These links form bridges

for the gateway links, and complete the connections

that form the top and bottom spirals. Type II links

are the top and bottom connections in each module.

Again, examination of any size spiral network topology

confirms that there are also n/2 Type II links In each

one way spiral network.
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Type Ill: Crossover Links - These links, along with

the Type II Transient Links, form the individual

modules. The crossover links cause a change from one

spiral to the other. The number of crossover links in

any full duplex spiral network is quickly verifiable to

equal twice the number of nodes present in that

network. Thus, there are (n) Type III links in each one

way spiral network.

The total number of one way links in any size spiral

network, then, is the sum of these three types.

The external traffic load passed over a particular link

depends on the mean message arrival rate to the link, and

whether the link is of Type I, II, or IlI. The heaviest

links are of Type I and II since they form the top and

bottom spirals. In an error free network, only links

directly connected to source or destination nodes perform as

Type III. In other words, a message uses a Type III link

only at the beginning or end of its path. As it moves along

the spiral, the message spends the remainder of the

transmission time on Type I or II links. Let kI , x1 ,- and

XI-I represent the total number of combinations of each type

of link in any size spiral network. Recall from theorem 3

in section 7.4 that Yij In messages per second, represents

the amount of new external traffic entering node (i)

and destined for node (J). - Then the amount of one way

K
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link traffic on each of the three types of links Is defined

as follows:

TYPE 1: y i X ,.

TYPE II: 'Yij'kII X2'

TYPE III: Yijx ,,- X3*

7.6.3. Proof of Theorem 5

For a Type I link, If one listed all the possible one way

traffic combinations (Yij 's) for each source-destination

pair, the total number results In the following pattern:

m
-- + (m-0) + 3(m-1) + (m-2) + 3(m-3) + (m-4) + 3(m-5) ...
2

--- + Z(m-21) +'~ 3(m-21-1), or
2 IWO 1=0

Where:

a the number of modules In the network, and

fl= the ceiling function. rm/21 =m/2 if m is even,

else round up to the next Integer.

Listing all the possible one way traffic combinations

(Yi 's) for each Type II source-destination pair results

In the next pattern:

m
- + (m-0) + Cx-1) + 3Cm-2) + (m-3) + 3Cm-4) + (a-5)...,
2
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-i + Z 3(m-21) + 'IF(-21-1).
Ii=2 1=-1 i=0

Where. LJIS the floor function. Lm/2J = M/2 if m is

even, else truncate the decimal portion.

And finally, It Is quickly verifiable that the number of one

way 'ijs of Type III is exactly equal to the number of

modules (an) In the network. From theorem 3, with no failures

(f a 0), the aver-age amount of external traffic from source

node (1) to destination (J) is Y*.= 4/(IAT(n-l)). Therefore

the total average one way traffic Is:

n/2 n/2
-Y = j2: + Y.- Z XII + Yij Z IX

n/2 n/2 ai
- Y.. ZXI + ZXI+ Z X111)

1=1 1 =

n
-Yi Y- (XI + XII ) + n XIII]

2

4 n M-I ~jIM
X--- -{-t5m-4 + £: (7m-141-3) + I (m-21-1)] + inn).
IAT(n-1) 2 1=1 1-1

Q.E.D.

7.7. Theorem on Mean Path Length

THEOREM 6: The mean path length (L) In any size spiral

network having no failed nodes or links, and measured In

hops, is given by
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h
L = --- (2h + 1),

n-I

where:

h = maximum number of hops between the most distant

source-destination pair, and

n = number of total nodes in the network.

Proof:

From theorem 1, there are four disjoint paths between any

source-destination pair. Starting at an arbitrary source

node, there are four possible links for the first hop. From

any intermediate node (i), there are also four options to

form the (I + 1)st link. So for the first (h - I) links, the

mean number of hops is

h-I 4
(7.7.1) i --- I.

1=1 n-I

Now for the last link, there are only three remaining links,

since two directly connected links are tied to the same

destination node. Mathematically, this last hop Is

represented as

3
(7.7.2) --- h.

n-1

Combining the results from equations (7.7.1) and (7.7.2), we

form the weighted mean path length, where the weight is the

number of the link in a path.
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h-I 4 3
L ; - - I -

1=1 n-i n-I

I h-I
L =--- C Z 41 + 3h)

n-I 1=1

I h-i
L =--- (4 Z I + 3h].

n-I 1=1

In n
Now, using the well known fact that 1i =1 (ni + 1),

1 (h 1 )(h)
L = --- [4---------- 3h]

n-I 2

1
= --- 12(h2  h) + 3h]

ri-i

I
= --- 12h 2 

-2h + 3h]
n-i

h
= --- (2h + 1)
n-i

Q.E.D.

As an example of how the theorem Is applied, consider the

7-module, 28-node spiral network. Arbitrarily choose node

(0) as the source node. The four disjoint paths are:

Source Farthet1node from source

o -) 1 ->16 -)17 >4 ->5 -20 ->21

o0- 3 -> 18S- 19 ->6 -7 -)22 ->23

o0- 2 ->15 -)14 ->27 ->26 ->11 ->10

0 ->13 ->12 -)25 ->24 -> 9 -8 ->21

links: 1 2 3 4 5 6 7
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4 4 4 4 4 4 3
L = --*1 + -- *2 + --*3 + -- *4 + --*5 + -- *6 + --*7

27 27 27 27 27 27 27

L = 3.88889.

Using the formula directly with n = 28 and h = m = 7,

7
L ---- [2(7) + 11 = 3.88889.

28-1

7.7.1. Analysis of Mean Path Length

Recall that IAT is the mean time In seconds between arrival

of external messages to any arbitrary link In a spiral

network, regardless of size. Therefore external messages

arrive at the rate of I/IAT. Since each node has four

connected links (see chapter 5), the arrival rate of

external messages to each node is 4/IAT. If we define Y to

be the total number of messages per second entering the

entire network, then Y = 4n/IAT, since there are n nodes in

the network. The one way mean path length is therefore the

ratio of the total average one way link traffic (k), to the

average one way offered load 145]. Letting Y' = Y/2 =

2n/IAT, the mean number of links traversed by a typical

message is the ratio %IN'. But from the previous theorem,

we have a closed form expression for the mean path length.

Our current purpose is to compare path length values

obtained from three independent approaches: 1) the ratio

X0/'; 2) the equation from theorem 6; and 3) the measured
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result from simulation.

Table 7.2 summarizes path length results found using these

three independent approaches. The values of X in the second

column of table 7.2 are found by using theorem 5. Y' =

2n/IAT, where IAT = 20 seconds. The column Lr is found by

using the ratio described above (X/Y'). The 5th column (Lt)

contains theoretical results from theorem 6. Note that the

columns Lr and Lt are identical, as they must be If our

analysis is accurate. The last column (LMT) contains the

values found by the simulation model. In the model

total number of hops for all messages
Lm ---

number of messages

Notice that without exception for the 12 networks analyzed,

the measured result (Lm) is extremely close to theoretical

expectations (Lr and Lt).

Manann
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Table 7.2. Mean Path Length Comparison.

(in number of hops)

n Yl Lr Lt Lm

16 3.8399 1.6 2.4000 2.4000 2.3923

20 5.7894 2.0 2.8947 2.8947 2.9005

28 10.8889 2.8 3.8889 3.8889 3.8772

32 14.0386 3.2 4.3871 4.3871 4.3488

40 21.5384 4.0 5.3846 5.3846 5.3597

44 25.8883 4.4 5.8837 5.8837 5.9078

52 35.7885 5.2 6.8824 6.8824 6.9240

56 41.3381 5.6 7.3818 7.3818 7.3497

64 53.6380 6.4 8.3809 8.3809 8.4295

£8 60.3881 6.8 8.8806 8.8806 8.9185

76 75.0881 7.6 9.8800 9.8800 9.8270

80 83.0376 8.0 10.3797 10.3797 10.2005

I J111 It A p U . ~ ~U9
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7.8. Analysis of System Utilization

This section discusses the calculation and comparison of the

mean link utilization (p), in any size spiral network,

regardless of failures. We first find exact theoretical

values (pt) by using theorem 5 to find the total average one

way link traffic (k). These results are compared to a

shorter approximation approach (Pa), and to actual measured

values found from simulation.

Assuming a Poisson message arrival rate with X messages per

second arriving on the average, exponentially distributed

message lengths with mean I/g, and Infinitely large buffers,

the following expressions can be used [451:

Theoretical: Pt = - - = mean message length,
4C

C = EC i , total network

capacity In bits per

second, and

x = total average one way

link traffic.

Approximation (as defined in section 7.5):

P a "-" Lm, xi = I/IAT,
Ci = link capacity in

bits per second, and
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Lm = mean path length.

Simulation model:

average time all links busy

Pm=
total network time

Table 7.3 summarizes these results for the 12 spiral

networks used throughout our analysis. The values of X used

here are from table 7.2. Notice how closely the

approximation (Pa) is to the theoretical utilization (p1 ).

This is the confirmation promised in section 7.5 on the

goodness of Pa. The high confidence In our model is again

confirmed as the values found from direct simulation,

without exception, are extremely close to the theoretically

expected utilization.

.~ -... I.'* - * *1- -
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Table 7.3. System Utilization Comparison.

inl C PtPaM

4 614400 .05000 .04984 .04820

5 768000 .06031 .06043 .05890

7 1075200 .08102 .08078 .07972

8 1228800 .09140 .09060 .08849

10 1536000 .11218 .11166 .11286

11 1689600 .12258 .12308 .12104

13 1996800 .14338 .14425 .14673

14 2150400 .15379 .15312 .15060

16 2457600 .17460 .17561 .17136

17 2611200 .18501 .18580 .17796

19 2918400 .20583 .20473 .20226

20 3072000 .21624 .21251 .21263
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7.9. Analysis of Mean Queue Length

This section defines and compares the theoretical mean queue

length to the values found using the simulation model. Let

E(n) represent the mean queue length In any size spiral

network. If we assume a Poisson message arrival rate with X

messages per second arriving on the average, exponentially

distributed message lengths with mean 1/.j, and infinitely

large buffers, we can use the results derived in 1451 for

the mean queue length computations:

1). Theoretical mean queue length based on theoretical

utilization (pt):

Pt

Ett (n) =------- where Pt= / lXC as calculated
I - p1

in table 7.3.

2). Theoretical mean queue length based on simulation model

utilization (Pm ):

Pm

E un (n) =- -------, where pm is the measured result
- Pm

from simulation as reported in

table 7.3.

3). Simulation model value calculated directly, Independent

of pm calculations:

sum of the average of all queues
Em(n) =- ----------------------------------

number .f messages
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In this last case, after each message Is delivered, a

snapshot of all queue lengths is averaged, and added to a

running total. When the total number of messages used for

statistics has been delivered, this sum of queue averages is

divided by that total number of messages used for

statistics. (See Appendix B for a discussion of the

simulation model). Table 7.4 summarizes for comparison the

mean queue length values found using the three approaches.

While the results for the mean queue length are consistently

close for theoretical (El (n)) and model (Etm(n)) system

utilization values, in every case the mean queue length

results from simulation (Em(n)) Is consistently smaller.

Notlce In the table that as the size of the network

Increases, Em(n) approaches the theoretically expected

values. Em(n) is much less than the theoretical

expectations for smaller networks because of the common

parameters selected for use In all networks. When the

network contains only four modules (16 nodes). these common

parameters result in the highest number of empty queues.

The common link speed Is 19200 bits per second, with

messages arriving with frequency .05 messages per second.

The mean queue lengths Em(n) were found by first including

the empty queues in computations, and then by excluding

these empty queues. Simulation results confirm that when

empty queues are removed -from computations, without

exception, the values of Em(n) exceed theoretical
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expectation. When these empty queues are left in the

computations, as the mean path length increases (because of

an Increase In network size), the number of empty queues

decreases. This decrease occurs because there is a greater

chance that a message must wait for the transmission link.

The Increase in mean path link explains why the values of

Em- n) approach the theoretical expectations (Ett (n) and

Etm(n)) as the network gets larger.

Table 7.4. Mean Queue Length Comparison.

m Ett (n) Etm(n) Em(n)
------- -----------------------------------------

4 .05263 .05064 .00483

5 .06418 .06259 .00947

7 .08816 .08663 .01909

8 .10059 .09708 .02436

10 .12635 .12722 .04999

11 .13971 .13771 .06076

13 .16738 .17196 .10231

14 .18174 .17730 .11078

16 .21153 .20680 .15505

17 .22701 .21649 .17986

19 .25918 .25354 .22606

20 .27592 .27005 .26373
------------------------------------------------
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7.10. Analysis of Mean Network Delay

We are now ready to calculate and compare the time that It

takes for any size spiral network to deliver a message.

Assuming Poisson message arrivals to an arbitrary link (1)

with rate K mdssages/second, exponentially distributed

messages with mean length 1/ , and infinitely large buffer

capacity, the average delay In seconds incurred by messages

at the (1)th link is (45]:

(7.10.1) T i =-----

This result invokes Kleinrock's assumption (461 that the

operation of individual nodes is independent of each other.

This assumption is approximately valid when the overall

system utilization Is less than .5000. The highest

utilization of any of the 12 spiral networks simulated and

analyzed In our research was .21263 (see table 7.3 for

confirmation).

Based on equation 7.10.1, the total overall average one way

delay for any size spiral network Is defined to be (45]:

(7.10.2) T - -T i T i ,
,Y , I

where y' is the average one way offered traffic load. In our

case, since we have three types of links (Types I, II, and

1I1), the overall delay equation T can be modified to
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reflect these types:

I n/2 n/2 n
T [ V \jTI I I' or

*Y' 1=1 1=1 1=1

In
(7.10.3) T = -- (,IT,+ x2Tii) + nk 3 Tii 1J,

' 2
where Xl, X2 , and X. are as defined In section 7.6.2, and

TII 1 1 -- - - -

1

TIII- ici - ) 3

Table 7.5 shows the theoretical results (in seconds) of

applying equation 7.10.3. These values (in the column

labeled Tt) are compared to the delay values found in the

simulation model (Tm). In the model, the actual delay for

each message is calculated and added to a running total.

When all messages used for statistics have been collected,

this delay total Is divided by the number of messages used.

(See Appendix B for a discussion of the simulation model).

R
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Table 7.5. Mean Network Delay Comparison.

(in seconds)

m Tt Tm

4 1.07223 1.06421

5 1.31367 1.37995

7 1.85592 1.96620

8 2.14482 2.26595

10 2.76750 3.19398

11 3.10376 3.66591

13 3.83463 4.94012

14 4.23261 5.28370

16 5.10178 6.63168

17 5.57783 7.40714

19 6.62851 8.68546

20 7.20997 9.52298

-- -- -- -- -- - -- -- -- -- -- -
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8. ANALYSIS OF SPIRAL NETWORK TOPOLOGY UNDER FAILURES

8.1. Introduction

Failures analyzed in this section range from a single

arbitrary node, to catastrophic conditions where complete

modules have failed. Conclusions drawn are based on two

approaches to analysis. 1) Simulation results were analyzed

and compared to theoretically expected values; and 2) The

spiral network threading pattern was thoroughly analyzed.

The first part of this chapter addresses arbitrary node

failures. The last part is the result of analyzing the

network threading pattern to determine the impact failed

modules have on performance. Appendix D contains the

Summary of Simulation Results used to draw conclusions based

on model analysis.

We conclude that failure of any arbitrary single node (or a

few arbitrary nodes), has minimum impact on the operation of

remaining good nodes. Even catastrophic failure patterns

possible through intentional human intervention, may not

completely disconnect the network. Although the 7-module,

28-node spiral network is used throughout, results apply for

any size spiral network. The spiral network expansion

algorithm subsumes the 7-module network as a larger network

Is built, thereby causing the results found for 7-modules to
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apply to any larger spiral network.

8.2. Arbitrary Node Failure(s)

Failure of any arbitrary single node, or a few arbitrary

nodes In a spiral network, has minimum impact on the network

operations. As expected, the percentage of undelivered

messages due to this single failure is proportional to the

size of the analyzed network. The larger the network, the

less impact a single, or few failures have on overall

network performance.

Figures 8-1 through 8-3 graphically display the impact of

zero, one, two or three fallures on 12 different size spiral

networks. All networks were run using the same input

parameters. The common link speed was 19200, 4000 messages

were delivered to reach simulated steady state, and 4000

messages were used to gather statistics. Message arrivals

followed a Poisson rate with mean X = .05 messages per

second, and the message sizes were selected from an

exponential distribution with mean 1/i = 1000 8-bit

characters. Appendix B contains a detalled description of

the simulation model. And complete simulation summary

statistics are in Appendix D.

As expected, the impact of failures on mean queue length,

overall delay, and utilization is inversely proportional to
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the size of the network. Of key significance is how close

the four curves are for each of the attributes compared.

This closeness reflects how little an additional node

failure impacts overall network performance. Statistics used

to plot the curves in figures 8-1 through 8-3 are summarized

in table form in Appendix C.

Table 8.1 shows how closely the actual percentage of

undelivered messages due to failures, as calculated in the

simulation model, parallel the theoretical expectations

(f,). To arrive at the measured percentage, the simulation

program simply counted the number of undelivered messages,

and then divided that result by the total number of messages

used for statistics (4000). The theoretical expectation (ft)

is the percentage of failed nodes in each size spiral

network.

)I
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Table 8.1. Comparison of Undelivered Messages.

Percentage of Failures

m 1 ft  2 ft 3 ft

4 6.31 6.25 12.77 12.50 19.21 18.75

5 4.85 5.00 10.37 10.00 15.45 15.00

7 3.86 3.57 7.66 7.14 10.94 10.71

8 3.31 3.13 6.51 6.25 9.65 9.38

10 2.59 2.50 5.24 5.00 7.68 7.50

it 2.24 2.27 4.30 4.55 6.62 6.82

13 1.85 1.92 4.07 3.85 5.41 5.77

14 1.85 1.79 3.71 3.57 5.32 5.36

16 1.62 1.56 3.14 3.13 4.55 4.69

17 1.21 1.47 2.89 2.94 4.65 4.41

19 1.32 1.32 2.64 2.63 3.85 3.95

20 1.30 1.25 2.33 2.50 3.76 3.75--- -- --- -- --- -- --- -- --- -- --- -- --- -- --- --

NA WR .K-IL
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8.3. Failure of a Complete Module

Any single module loss still leaves two disjoint paths to

all other modules. For example, consider the 7-module

network repeated in figure 8-4. If module #2 is destroyed,

the two paths connecting the remaining nodes exist along the

top and bottom spirals. Further, the threading pattern for

this failure case (figure 8-4(b)) quickly confirms that all

remaining modules are still connected.

a). Seven Module Spiral Network With One Module Killed.2D 5 03 1070 l U 2(

%w

b). Seven M dule Network Threading Pattern.

Figure 8-4. Complete Module Failure.
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8.4. Failure of Multiple Modules

8.4.1. Two Adjacent Modules

The failure of any two physically adjacent modules, and an

additional one two modules away, is no worse than the loss

of the two adjacent modules. Further, there are still two

disjoint paths to all remaining good connected modules. For

example, again consider the 7-module network's threading

pattern. Shown in figure 8-5 Is the case where modules 6 and

7 have failed. Notice that modules 1, 2, 4, and 5 are still

connected along top and bottom spirals. Notice also that

module #3 is already isolated from the four other good

modules. The four nodes comprising module 3 can talk to

each other, but not to anyone else. So If module #3 also

should fall, there is no additional impact on modules 1, 2,

4, and 5.

7C

Figure 8-5. Threading Pattern With Two Adjacent

Modules Klled.

/ - ~ /~/ S
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8.4.2. Every Other Even/Odd Module Lost

The loss of complete network connectivity among modules is

extremely difficult. For a spiral network containing seven

or more modules, even If every even (or odd) module within

the network fails, there is still connectivity between at

least two modules. For the 7-module spiral network, modules

1, 3, 5, and 7 failing still leaves modules 2 and 6

connected. If 2, 4, and 6 failed, the module pairs I and 5,

and 3 and 7 remain connected. The module threading patterns

shown in figures 8-6 and 8-7 are graphic depictions of these

cases. In both cases, connected modules are reachable along

both top and bottom spirals. In figure 8-6, the isolated

nodes on module #4 can still communicate with each other.

6

Figure 8-6. Every Odd Numbered Module Killed.

-F J.wr,% %.LN

V ~V. ~ ~ ~'~\."f" ~\ ~if.1 N 4~ ~\'s. 'A
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Figure 8-7. Every Even Numbered Module Killed.

)I

8.4.3. Catastrophic Node and Module Failure

If at least one link exists to any module, then all nodes

that can reach that link, can also gain access to the

distant module(s). For example, consider the severe failure

pattern of figure 8-8. The link between nodes 3 and 18 can

be used by the remaining good nodes to communicate among

themselves. In this unique case, modules 2, 3, 6, and 7,

have failed, plus select nodes on other modules. Even in
this catastrophic case, there is still connectivity among

oood nodes. I)

U
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20

i FIgure 8-8. Several Modules and Nodes Killed.

8.4.4. Failure of Half of Each Module

Failure of the right (or left) half of every even (odd)

module, still leaves access to a partitioned set of good

modules and nodes. Further, these connected good modules

still have paths along top and bottom spirals. In the

7-module case shown in figure 8-9, the right sides of each

even module is destroyed. Notice that modules 1, 2, and 5 .

are still connected along top and bottom spirals. This is

also true of modules 3, 4, and 7. Further, if failures are

due to complete module(s) loss, as long as there is

connectivity between at least two modules, there will be a

minimum of two disjoint paths conecting these modules.

still~~ ~ ~ ~ hav paths aln-o n oto prl.I h
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Figure 8-9. Half of Each Even Module Killed.

8.5. Summary

It should be apparent from the above discussion that

significant network performance impact is felt only after

more than a few arbitrary nodes have failed. Even In

catastrophic cases, connected good nodes still communicate,

and therefore the spiral architecture tolerate failure(s)

extremely well. Although certain failure patterns cause

complete direction change, and thus increase the message

delay, the significance Is that messages still reach their

destination even with the failures. Some of the failure

combinations analyzed will not generally occur as a result

of randomness. These patterns Oere selected to -demonstrate

spiral's extreme tolerance to failures.
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As the number of failures increase, a point Is reached where

the delay becomes shorter than in the error free case. This

situation results when so many nodes and modules have failed

that path lengths between remaining good nodes is shortened

considerably.

Obviously certain failure patterns are likely only as a

result of deliberate network sabotage. Even in this highly

unlikely case, every pair of link nodes in the network must

fail simultaneously to completely disconnect all modules.

But even if every pair of link nodes did fail, nodes

comprising a module still have local connectivity, and

therefore, the ability to communicate. In the absence of a

sabotuer, the spiral topology displays an extremely high

tolerance to node and link failures. For sure, the fault

tolerance of the spiral topology exceeds that of the

traditional topologies discussed in chapter 3, and at a

small expense for duplication of hardware.
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9. CONCLUSIONS

The six most important direct consequences of the spiral

computer network architecture are the spiral topology's 1)

ease of expansion; 2) fast, on-the-fly self-routing; 3)

extremely high tolerance to faults; 4) increased network

security; 5) potential for the total elimination of store

and forward transmission due to routing decision delays; and

6) rendering the maximum path length issue moot.

Based on our thorough analysis, we conclude unequivocally

that the spiral topology is a major contribution to the

discipline of Computer Communications. Results in chapters

5 through 8 confirm that the spiral architecture Is indeed

easily expandable, highly fault tolerant, and self-routing.

Also confirmed is the topology's applicability to any

general network environment. The architecture can be use to

connect computer nodes to form local, metropolitan, and wide

area networks. If used, this topology should prove to be a

major advantage to the telecommunications Industry as that

Industry throughout the world continues to evolve towards a

global Integrated Services Digital Network.

Finally, the fast, on-the-fly routing attribute affords a

tremendous opportunity to expand the use of fiber optics

technology In local area computer networks.
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10. TOPICS FOR ADDITIONAL STUDY

The sequential listing of the following recommended topics

for additional study in no way suggests a prioritized

ordering. The only purpose In enumerating these topics is

for organization.

1. Link Versus Node Failure

The results reported in this research were based on the

analysis of various size spiral networks, with and without

failed nodes. When a node failed, it automatically

destroyed all four of the directly connected links.

However, it is possible for a single or set of links to

fail, and still leave a node accessible. If individual links

were allowed to fail, and the resulting topology analyzed,

the spiral routing algorithm should still operate as

designed. Intuitively, one would expect the Impact of link

failures on performance to be less severe than when nodes

fall. Analyzing the spiral topology for arbitrary llna

failures should prove to be challenging.

2. Destination Address Variability

Mathematically, a study of thi variability in the number of

messages sent to each node In an error free spiral network
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may prove interesting. Does the variability Increase

directly proportional to the network size, or is it fairly

Independent of size? Perhaps at steady state, the

variability in the number of messages sent to each node

remains constant, regardless of the size of the network.

3. Variability in Number of Empty Queues

Again mathematically, how does the number of empty queues

vary with network size in an error free spiral network? We

saw in chapter 8 that as the network size grew, the measured

mean queue length approached the theoretically expected

results from the lower side. Do these two approaches

converge because of a uniform increase in queue lengths

throughout the network, or Is the Increase mainly limited to

a certain type of link (Type I, II, or III)?

4. Circuit and Packet Switching

Of Interest and significance to a potential Integrated

Services Digital Network user contemplating the use of the

spiral architecture, is the study of the performance of the

spiral network architecture using circuit switching only,

and a mix of circuit and packet switching. For example, the

larger the network, the longer is the mean path for packet

switching. Does this also -imply that the-mean circuit

switched path increases with network size? Or will the
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probability of blocking In a circuit switched environment be

reduced because on the average, a larger portion of the

connections will be short, and perhaps avoid contact with

the occasional "long" connection? Further, what about

integrating circuit and packet switching technology on the

same common channel? Intuitively, the 2B + D CCITT standard

discussed in chapter 2 could be implemented using the spiral

architecture. Then, the packet traffic would not have to

compete with circuit switching for use of the links.

Rather, packet and circuit switched traffic would share the

channels. What would performance be like in this situation?

Can a set of balance curves be derived that allows one to

achieve a better balance between circuit and packet

switching, whether the traffic is Integrated in some sort of

2B + D scheme, or competing for the network resources?

5. Closed Form Expressions When Failures Occur

Are reasonable and meaningful results possible in closed

form for failed nodes, similar to those reported in chapter

7 for error free spiral networks? If the analysis based on

individual link (versus node) failures Is done, are similar

closed form expressions possible?

6. Alternate Approaches to Modeling the Spiral Topology

The current simulation model for the spiral topology is
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mostly matrix driven, with global variables, and parameter

passing among program subroutines. The C programming

language contains constructs that can be used and passed as

a generic shell. Would the use of the generic shell yield a

more efficient, or *better* simulation model? Is the use of

huge matrices (I. e. 256 x 19, 1024 x 40, 1024 x 60) a

standard and recommended approach to developing a simulation

model? In the 1024 x 60 matrix used to simulate the spiral

architecture nodes, 51 of the columns In each row were used

as queue slots for each of the four links at each of (n)

nodes. Is it possible to maintain a common "pool" of queue

slots that are allocated and return dynamically? These are

issues of (some) interest to Computer Scientist.

7. Spiral Topology Applied to Computer Hardware Memories

We see no immediate reason why the highly fault tolerant,

fast, on-the-fly routing attributes of the spiral topology

cannot be used as an interconnection network for connecting

computer hardware memories. Perhaps the spiral architecture

could also be used for fast retrieval from shared memory

units.

8. Behavior as Steady State is Approached

There are mathematicians interested In che behavior of

systems during the transition period leading up to steady
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state. Treating the spiral topology as such a system, one

may study several issues. How does the number of messages

sent to each node vary? What happens to mean and maximum

queue lengths? What about the behavior of link utilization?

Is steady state approached uniformly, or do certain types of

links (Type I, II, or III) approach steady state faster than

others? What about the variability in message sizes?

9. Upper Bound on Maximum Number of Paths

We reported in theorem 1 on the number of totally disjoint

paths in any size spiral network without failures. Using

combinatorics, is it possible to place an upper bound on the

total number of paths, where links are shared? Can this be

done In closed form allowing for failed nodes?

J A,
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A. EVOLUTION TO ISDN WITHIN THE BELL OPERATING COMPANIES

The Bell System evolution toward ISDN started In 1962 with

the introduction of the TI carrier system. The Bell System

has passed many additional milestones since then, Including

the following (101:

* 1965 - Stored Program Controlled Switching

* 1974 - Digital Data System/Dataphone Digital Service

* 1976 - Time Division Tandem Switch

* 1976 - Packet Switched signaling

* 1981 - Time division Local Switch

The Bell Operating Companies' (BOC's) telecommunications

networks today are primarily 4-kHz voice networks. The

origins of technologies that enable the economic evolution

toward an ISDN, however, began over twenty years ago with

the introduction of the T-carrier system and the AT&T

Western Electric IESS switch [471.

The T-carrier system provides a 1.544-Mbps facility carrying

24 to 64-kbps channels plus framing bits. Some of the bits

in the 64-kbps channels are robbed for signaling purposes.

While this is not a perceptible degradation on voice

circuits, it would cause unacceptable error rates for data

applications. Hence, as on Dataphone Digital Service (DDS),

only 56-kbps can be provided for customer applications.
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ISDN evolution strategies range from overlay strategies, In

which a parallel ISDN network Is deployed side-by-side with

the existing voice network, to replacement strategies, in

which geographic areas undergo replacement of existing

equipment with ISDN equipment. Given the large capital

investment in the telecommunications networks of the BOC's,

a strategy which combines the two is appropriate. Existing

equipment must be augmented wherever possible, with new

equipment deployed when required I11).

The telecommunications networks of the BOC's will evolve to

ISDN In basically a four-step fashion 11]. First, new

transition services will be introduced which offer ISDN-like

services. These services will be low in development and

deployment cost so as to minimize the Inherent risk

associated with new service offerings. Examples include

Circuit Switched Digital Capability and Local Area Data

Transport. Second, as the existing network grows to meet the

rising demands of customer traffic, new ISDN compatible

equipment will be deployed, seeding the network with

facilities capable of meeting the ISDN standards. Examples

of such equipment Include fiber optics, 64-kbps clear

channel transmission equipment and common channel signaling

capabilities. Third, true ISDN service offerings wiltl

appear In areas where customer needs dictate them. Typically

these will be business areas, usually located In downtown

metropolitan areas. And fourth, as ISDN demand Increases, I
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ISDN capabilities will permeate the entire BOC network.

The existing public telecommunications network can be

characterized as having five major components: the local

loop, the local switch, the metro or interoffice facility,

the tandem switch and the intercity facility. In addition to

these, signaling is the "glue" that holds this entire

process together 10].

J. Weber and C. Skrzypczak [101 and R. Wienski [11] discuss

several areas In which digital progress must continue to

evolve If we are to realize the ISDN as described by the

CCITT. These areas are as follows:

1. ISDN Access Evolution

2. Local Loop Evolution

3. Metro/Interoffice Evolution

4. Tandem Switching Evolution

5. Intercity Facilities Evolution

6. Signaling Network Evolution

7. Interworklng of ISDN with existing Services

The following paragraphs describe briefly underlying

economic trends which impact the five major components of

the public network and the seven areas of the ISDN evolution

[i0, Ill.
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A.I. ISDN Access Evolution

Several access methods are under study to provide data and

voice over the same 2-wire loop (15]. The first technique

uses time compression multiplexing (TCM) to provide a

56-kbps digital data transmission channel. The second

technique, the digital subscriber line (DSL), can be

provided using TCM or other techniques to support multiple

digital channels In the ISDN. The third technique, digital

over analog, uses channel equipment to put data (up to

8-kbps) In the frequency spectrum above voice. For higher

capacity applications, either multiple channels multiplexed

together or broadband channels can be employed. The

broadband channels can be provided using T-carrier, radio,

lightwave or other systems.

A.2. Local Loop Evolution

The local loop is often regarded, along with the intercity

facilities, as a bottleneck in providing digital

capabilities [51. This Is true given the percentage of

loops currently carrying digital signals. A key issue is

the digital techniques that can be overlayed on the existing

metallic loop plant. Four alternatives include four-wire

baseband, multiplexing, low bit rate data above voice, and

digital subscriber line (51.



160

A.3. Metro/Interoffice Evolution

Digital technology first penetrated the public

telecommunication network In the metro facilities component

with the introduction of TI carriers in 1962. Since the

public telecommunications network was originally an analog

network, It was necessary to go through an analog to digital

and digital to analog conversion each time a digital

component was Inserted. However, as digital technology

began to proliferate, a new digital component was often

Interfaced directly with another digital rather than an

analog component. This eliminated the need for conversion

and further reduced the cost of the digital alternative

(t01.

A.4. Tandem Switch Evolution

The obvious choice for a tandem switching vehicle to support

end-to-end digital connectivity Is a stored program

controlled (SPC) time division switch [see 101. An SPC

space division switch with relatively minor modifications

can also support end-to-end digital connectivity. In the

evolution to ISDN, both time and space division technologies

will probably be employed.
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A.5. Intercity Facility Evolution

In the Intercity facility portion of the network, digital

technology has not generally proven Itself over the analog

alternative based on economics alone [10]. The greater long

haul breakthrough might occur with subrate (less than

56/64-kbps) voice.

A.6. Signaling Network Evolution

The signaling capability which ties together the five basic

components of the public telecommunications network can be

separated Into two major segments [101: Signaling from the

customer premises to the line side of the local switch and

signaling from the trunk side of the originating local

switch to the trunk side of the terminating local switch.

On the line side of the local switch and the loop, some of

the future ISDN technologies such as DSL, will support the

signaling needs of the ISDN. The Bell System began to

Introduce out-of-band common channel signaling In the

portion of the network between central offices In 1976. It

provides significant trunk efficiencies and faster call set

up times. It is now proving to be capable of supporting

extended routing, enabling the provision of a wide range of

new and expanded service capabilities compatible with the

evolution to ISDN.
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A.7. Interworking of ISDN with Existing Services

Interworking with existing services will allow fora

successful early deployment of ISDN In a smooth,

step-by-step upward compatible fashion. Several schemes have

been proposed to provide interworking 110, 43, 441.
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B. SIMULATON MODEL DESCRIPTION

B.1. Introduction

The simulation model used in this research contains

approximately 2700 lines of computer program source code.

The C programming language was used, and the compiled source

code runs on a computer system using the UNIX operating

system. Most of the model development work was done on the

VAX 11/780 computer system at North Carolina State

University. To obtain the summary results used for

comparative analysis, the completed model was run on a Gould

computer system at the U. S. Air Force Academy in Colorado.

The summaries of these simulation results are found in

Appendix D. And the complete C source code Isttng Is In

Appendix E.

A matrix driven software development strategy was used to

develop the final model that implements the spiral computer

network topology concept. The actual building of a spiral

network, with or without failed nodes, is implemented by

using a matrix with 256 rows and 19 columns. The 256 rows

allow a spiral network to contain at most 64 modules (256

nodes). See the declarations section In the documented

source code listing in Appendix E for an explanation of how

each column is used.
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A matrix with 1024 rows and 40 columns contains Information

needed to keep track of, and send messages over the network.

At most 1024 active messages can exist in the network at any

one time. This limitation is easily changed to allow for

more messages. However, we were able to deliver 8000

messages with mean arrival rate of .05 messages per second,

and mean size of 1000 8-bit characters, over a 20 module (80

node) network without exceeding the 1024 active message

limitation. See the declarations in the C program source

code in Appendix E for an explanation of how the 40 columns

are used.

The simulation program was written in two major phases.

Phase I builds a spiral network and sets failures as

desired. Phase II simulates the passing of messages over

the network. The remainder of this appendix addresses these

two phases, and summarizes the specific common parameters

used to generate results that were compared to analytical

ones.

B.2. Phase I: Construction of a Spiral Network

An Individual running this program begins by responding to a

series of computer generated prompts. The prompts include:

1. How many modules are desired?

2. Does the user want nodes or complete modules to fail?

3. Does the user want to save or see a copy of the current

F,
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network connectivity matrix?

The program checks to insure that a legal number of modules

has been requested. For example, if the user requested more

modules than there are node numbers available, then he Is

warned of this fact, and afforded the opportunity to add

additional node numbers. If the number of requested modules

Is an Integer multiple of 3 (see chapter 5), an explanation

Is returned explaining why that request is not valid. Once

the desired spiral network configuration is obtained, the

program begins Phase II with another series of prompts.

B.3. Phase II: Network Operation

This portion of the simulation experience also begins by

having the user respond to a set of questions, which

Include:

1. Is the user ready to send traffic over the network?

2. What common link speed would the user like?

3. What is the mean message size (selected from an

exponentially distributed population)?

4. What is the mean message interarrival time (selected

from a Poisson distribution)?

5. How many messages should be delivered prior to gathering

statistics?

6. How many messages should be used for statistics?
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Once all necessary parameters have been entered, the program

proceeds to simulate the network operation. Nodes send to

each other with equal probability. Of course If nodes have

failed, they neither generate, nor receive traffic. Since

source nodes have no knowledge of the status of destination

nodes, a short message may be generated notifying the sender

of the failure. This message may be sent by the directly

connected node that attempted delivery to the failed node.

Several statistical values are accumulated during the run,

and others are found after all messages have been delivered.

Every individual message Is accounted for by number, and a

complete route trace for each message is available. The

Summary of Simulation Results in Appendix D shows exactly

which statistics are reported. The simulation model source

code contains several subroutines that were used to debug

the code, and verify operations of key functions.

B.4. Specific Parameters Used for Comparative Analysis

The following parameters were used to generate the results

reported on and compared in chapters 6, 7, and 8:

i. Number of modules: 4 through 20 (16 - 80 nodes),

omitting Integer multiples of 3 (see chapter 5

for explanation).

2. Failed nodes: node I only, I and 6, and 1, 6, and 11

for each of the networks containing 4 through 20 modules.
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3. Mean message size: 1000 8-bit characters

4. Population distribution for message size: exponential.

5. Speed, all links: 19200 bits per second.

6. Mean message interarrival time: 20 seconds.

7. Message arrival pattern: Poisson.

8. Total messages delivered to reach steady state: 4000.

9. Total messages used for statistics: 4000.

pV
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C.I. RESPONF. TIME SUMMARY

(In seconds)

Number of failures

m 0 1 2 3

4 1.06421 1.11302 1.45934 1.73880

5 1.37995 1.39509 1.45060 1.48640

7 1.96620 2.13278 2.19353 2.18232

8 2.26595 2.28465 2.63852 2.65325

10 3.19398 3.22027 3.82371 3.83791

11 3.66591 4.20082 4.06034 4.21347

13 4.94012 5.01102 5.39482 5.63978

14 5.28370 5.89880 6.06670 6.09805

16 6.63168 7.13118 7.51444 7.60873

17 7.40714 8.02022 8.66145 8.74144

19 8.68546 9.45718 10.27761 10.96002

20 9.52298 11.11859 12.19756 13.05622
---------------------------------------------------------
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C.2. MEAN QUEUE LENGTH SUMMARY

Number of Failures

M 0 1 2 3

4 .00483 .00528 .01113 .01481

5 .00947 .00991 .00965 .01089

7 .01909 .02340 .02348 .02275

8 .02436 .02384 .03544 .03380

10 .04999 .04717 .06963 .06815

11 .06076 .08223 .07674 .07720

13 .10231 .10708 .11854 .12749

14 .11078 .13675 .14629 .14257

16 .15505 .17791 .19027 .19675

17 .17986 .20369 .23472 .23792

19 .22606 .26245 .30543 .33651

20 .26373 .33848 .37854 .41836
---- --------------------------------- ------------

.
- j~y eY- .) -. ,., ", , ,, , . . ,S, , .
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C.3. MEAN SYSTEM UTILIZATION

Number of Failures

m 0 1 2 3

4 .04820 .04915 .05721 .06242

5 .05890 .05970 .06067 .06069

7 .07972 .08303 .08154 .08094

8 .08849 .08925 .09713 .09270

10 .11286 .11266 .12128 .12125

11 .12104 .13323 .13101 .13023

13 .14673 .14673 .14988 .14971

14 .15060 .15810 .15848 .15578

16 .17136 .17441 .17497 .17924

17 .17796 .18123 .18957 .18653

19 .20226 .20770 .21000 .21111

20 .21263 .22342 .22481 .22740

--- --- -- --- -- --- -- --- -- ---------------------- ~ ~
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D. SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 4 (16)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8003

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to fallure(s): 0

Messages left in network: 3

Maximum queue length: 3 msgs

Node with max queue: 0

Link with max queue: 4

Mean queue length: 0.004832 msgs

Maximum path length: 4 hops

Mean path length: 2.3923 hops

Mean response time per message: 1064.2078 msecs

Mean delay/hop: 444.8564 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 28.8564 msecs

Mean link busy time: 61561.2031 msecs

Probability of link busy (rho): 0.048201

Probability msg does not queue: 0.951799

ft
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 5 (20)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8006

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 6

Maximum queue length: 4 msgs

Node with max queue: I

Link with max queue: 4

Mean queue length: 0.009471 msgs

Maximum path length: 5 hops

Mean path length: 2.9005 hops

Mean response time per message: 1379.9475 msecs

Mean delay/hop: 475.7620 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 59.7620 msecs

Mean link busy time: 60784.1992 msecs

Probability of link busy (rho): 0.058903

Probability msg does not queue: 0.941097

L ama a ~-- f.f%i fi
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 7 (28)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8012

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left In network: 12

Maximum queue length: 6 msgs

Node with max queue: 18

Link with max queue: 3

Mean queue length: 0.019092 msgs

Maximum path length: 7 hops

Mean path length: 3.8772 hops

Mean response time per message: 1966.1960 msecs

Mean delay/hop: 507.1111 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 91.1111 msecs

Mean link busy time: 57764.1328 msecs

Probability of link busy (rho): 0.079719

Probability msg does not queue: 0.920281
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 8 (32)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8015

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left In network: 15

Maximum queue length: 7 msgs

Node with max queue: 18

Link with max queue: 4

Mean queue length: 0.024363 msgs

Maximum path length: 8 hops

Mean path length: 4.3488 hops

Mean response time per message: 2265.9526 msecs

Mean delay/hop: 521.0583 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 105.0583 msecs

Mean link busy time: 56365.5938 msecs

Probability of link busy (rho): 0.088485

Probability msg does not queue: 0.911515
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8022

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 22

Maximum queue length: 8 msgs

Node with max queue: 11

Link with max queue: 4

Mean queue length: 0.049986 msgs

Maximum path length: 10 hops

Mean path length: 5.3597 hops

Mean response time per message: 3193.9814 msecs

Mean delay/hop: 595.9199 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 179.9199 msecs

Mean link busy time: 55793.5859 msecs

Probability of link busy (rho*: 0.112856

Probability msg does not queue: 0.887144

'S'
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): It (44)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8029

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 29

Maximum queue length: 9 msgs

Node with max queue: 31

Link with max queue: 4

Mean queue length: 0.060764 msgs

Maximum path length: It hops

Mean path length: 5.9078 hops

Mean response time per message: 3665.9067 msecs

Mean delay/hop: 620.5249 msecs

Mean transmission t~me/hop: 416 msecs

Mean queueing time/hop: 204.5249 msecs

Mean link busy time: 55864.1523 msecs

Probability of link busy (rho): 0.121042

Probability msg does not queue: 0.878958

UW A A31~-
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 13 (52)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8051

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 51

Maximum queue length: 14 msgs

Node with max queue: 9

Link with max queue: 4

Mean queue length: 0.102308 msgs

Maximum path length: 13 hops

Mean path length: 6.9240 hops

Mean response time per message: 4940.1172 msecs

Mean delay/hop: 713.4773 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 297.4773 msecs

Mean link busy time: 56526.7148 msecs

Probability of link busy (rho): 0.146728

Probability msg does not queue: 0.853272
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 14 (56)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8054

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 54

Maximum queue length: 10 msgs

Node with max queue: 14

Link with max queue: 4

Mean queue length: 0.110777 msgs

Maximum path length: 14 hops

Mean path length: 7.3497 hops

Mean response time per message: 5283.6992 msecs

Mean delay/hop: 718.8950 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 302.8950 msecs

Mean link busy time: 54718.0078 msecs

Probability of link busy (rho): 0.150596

Probability msg does not queue: 0.849404
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 16 (64)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8078

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left In network: 78

Maximum queue length: 14 msgs

Node with max queue: 25

Link with max queue: 4

Mean queue length: 0.155054 msgs

Maximum path length: 16 hops

Mean path length: 8.4295 hops

Mean response time per message: 6631.6797 msecs

Mean delay/hop: 786.7227 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 370.7227 msecs

Mean link busy time: 54123.2891 msecs

Probability of link busy (rho): 0.171358

Probability msg does not queue: 0.828642
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 17 (68)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8073

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 73

Maximum queue length: 19 msgs

Node with max queue: 20

Link with max queue: 4

Mean queue length: 0.179860 msgs

Maximum path length: 17 hops

Mean path length: 8.9185 hops

Mean response time per message: 7407.1406 msecs

Mean delay/hop: 830.5364 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 414.5364 msecs

Mean link busy time: 53412.2813 msecs

Probability of link busy (rho): 0.177962

Probability msg does not queue: 0.822038
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 19 (76)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8091

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left In network: 91

Maximum queue length: 12 msgs

Node with max queue: 4

Link with max queue: 4

Mean queue length: 0.226057 msgs

Maximum path length: 19 hops

Mean path length: 9.8270 hops

Mean response time per message: 8685.4648 msecs

Mean delay/hop: 883.8367 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 467.8367 msecs

Mean link busy time: 54357.6641 msecs

Probability of link busy (rho): 0.202256

Probability msg does not queue: 0.797744
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 20 (80)

Failee module(s):
NONE!

Failed node(s) (including those In failed modules):

NONE!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages qenerated: 8130

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 0

Messages left in network: 130

Maximum queue length: 13 msgs

Node with max queue: 20

Link with max queue: 4

Mean queue length: 0.263727 msgs

Maximum path length: 20 hops

Mean path length: 10.2005 hops

Mean response time per message: 9522.9766 msecs

Mean delay/hop: 933.5793 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 517.5793 msecs

Mean link busy time: 53638.7500 msecs

Probability of link busy (rho): 0.212634

Probability msg does not queue: 0.787366
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 4 (16)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8541

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 539

Messages left In network: 2

Maximum queue length: 4 msgs

Node with max queue: 15

Link with max queue: 2

Mean queue length: 0.005275 msgs

Maximum path length: 6 hops

Mean path length: 2.4210 hops

Mean response time per message: 1113.0168 msecs

Mean delay/hop: 459.7344 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 43.7344 msecs

Mean link busy time: 70795.8750 msecs

Probability of link busy (rho): 0.049145

Probability msg does not queue: 0.950855
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 5 (20)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8412

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 408

Messages left In network: 4

Maximum queue length: 6 msgs

Node with max queue: 3

Link with max queue: 3

Mean queue length: 0.009907 msgs

Maximum path length: 6 hops

Mean path length: 2.9467 hops

Mean response time per message: 1395.0864 msecs

Mean delay/hop: 473.4324 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 57.4324 msecs

Mean link busy time: 66087.1875 msecs

Probability of link busy (rho): 0.059703

Probability msg does not queue: 0.940297
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 7 (28)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
!

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8324

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 321

Messages left In network: 3

Maximum queue length: 7 msgs

Node with max queue: 18

Link with max queue: 4

Mean queue length: 0.023401 msgs

Maximum path length: 8 hops

Mean path length: 3.9890 hops

Mean response time per message: 2132.7830 msecs

Mean delay/hop: 534.6660 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 118.6660 msecs

Mean link busy time: 64512.3320 msecs

Probability of link busy (rho): 0,083031

Probability msg does not queue: 0.916969
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 8 (32)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messzges generated: 8285

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 274

Messages left In network: It

Maximum queue length: 6 msgs

Node with max queue: 3

Link with max queue: 3

Mean queue length: 0.023843 msgs

Maximum path length: 10 hops

Mean path length: 4.4765 hops

Mean response time per message: 2284.6470 msecs

Mean delay/hop: 510.3645 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 94.3645 msecs

Mean link busy time: 60035.6055 msecs

Probability of link busy (rho): 0.089249

Probability msg does not queue: 0.910751
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8234

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 213

Messages left In network: 21

Maximum queue length: 8 msgs

Node with max queue: 14

Link with max queue: 4

Mean queue length: 0.047172 msgs

Maximum path length: 12 hops

Mean path length: 5.4438 hops

Mean response time per message: 3220.2656 msecs

Mean delay/hop: 591.5527 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 175.5527 msecs

Mean link busy time: 59691.8906 msecs

Probability of link busy (rho): 0.112657

Probability msg does not queue: 0.887343

w6



188

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): It (44)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8227

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 184

Messages left in network: 43

Maximum queue length: It msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.082228 msgs

Maximum path length: 12 hops

Mean path length: 6.0747 hops

Mean response time per message: 4200.8203 msecs

Mean delay/hop: 691.5215 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 275.5215 msecs

Mean link busy time: 61959.9297 msecs

Probability of link busy (rho): 0.133229

Probability msg does not queue: 0.866771
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 13 (52)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
1

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8216

Messages delivered before stats: 4000

Messages used for statistIcs: 4000

Messages undelivered due to failure(s): 152

Messages left in network: 64

Maximum queue length: 13 msgs

Node with max queue: 2

Link with max queue: 4

Mean queue length: 0.107082 msgs

Maximum path length: 14 hops

Mean path length: 6.9545 hops

Mean response time per message: 5011.0195 msecs

Mean delay/hop: 720.5432 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 304.5432 msecs

Mean link busy time: 58951.1328 msecs

Probability of link busy (rho): 0.1476

Probability msg does not queue: 0.853274
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 14 (56)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8211

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 152

Messages left in network: 59

Maximum queue length: 14 msgs

Node with max queue: 46

Link with max queue: 4

Mean queue length: 0.136753 msgs

Maximum path length: 16 hops

Mean path length: 7.5758 hops

Mean response time per message: 5898.8047 msecs

Mean delay/hop: 778.6428 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 362.6428 msecs

Mean link busy time: 58466.6875 msecs

Probability of link busy (rho): 0.158095

Probability msg does not queue: 0.841905
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 16 (64)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8247

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to fallure(s): 134

Messages left In network: 113

Maximum queue length: 16 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.177909 msgs

Maximum path length: 18 hops

Mean path length: 8.5378 hops

Mean response time per message: 7131.1797 msecs

Mean delay/hop: 835.2527 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 419.2527 msecs

Mean link busy time: 57600.7891 msecs

Probability of link busy (rho): 0.174405

Probability msg does not queue: 0.825595
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 17 (68)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8204

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 99

Messages left in network: 105

Maximum queue length: 19 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.203690 msgs

Maximum path length: 18 hops

Mean path length: 8.9870 hops

Mean response time per message: 8020.2188 msecs

Mean delay/hop: 892.4243 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 476.4243 msecs

Mean link busy time: 56963.7383 msecs

Probability of link busy (rho): 0.181232

Probability msg does not queue: 0.818768

-~~~~~~~~11 I.Y v r~..~ '\.. ~ C *~.



193

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 19 (76)

Failed module(s):
NONE!

Failed node(s) (Including those in failed modules):

I

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8233

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 109

Messages left in network: 124

Maximum queue length: 21 msgs

Node with max queue: 66

Link with max queue: 4

Mean queue length: 0.262452 msgs

Maximum path length: 20 hops

Mean path length: 10.0020 hops

Mean response time per message: 9457.1758 msecs

Mean delay/hop: 945.5283 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 529.5283 msecs

Mean link busy time: 55894.4102 msecs

Probability of link busy (rho): 0.207695

Probability msg does not queue: 0.792305
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 20 (80)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8261

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to fallure(s): 107

Messages left in network: 154

Maximum queue length: 34 msgs

Node with max queue: 70

Link with max queue: 4

Mean queue length: 0.338484 msgs

Maximum path length: 22 hops

Mean path length: 10.5735 hops

Mean response time per message: 11118.5859 msecs

Mean delay/hop: 1051.5520 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 635.5520 msecs

Mean link busy time: 56719.5430 msecs

Probability of link busy (rho): 0.223421

Probability msg does not queue: 0.776579
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 4 (16)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 9176

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 1172

Messages left in network: 4

Maximum queue length: 6 msgs

Node with max queue: 1i

Link with max queue: 4

Mean queue length: 0.011125 msgs

Maximum path length: 10 hops

Mean path length: 3.0717 hops

Mean response time per message: 1459.3381 msecs

Mean delay/hop: 475.0837 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 59.0837 msecs

Mean link busy time: 96035.6875 msecs

Probability of link busy (rho): 0.057209

Probability msg does not queue: 0.942791
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 5 (20)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8930

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 926

Messages left in network: 4

Maximum queue length: 4 msgs

Node with max queue: 3

Link with max queue: 3

Mean queue length: 0.009645 msgs

Maximum path length: 6 hops

Mean path length: 3.0833 hops

Mean response time per message: 1450.6011 msecs

Mean delay/hop: 470.4780 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 54.4780 msecs

Mean link busy time: 75300.8750 msecs

Probability of link busy (rho): 0.060669

Probability msg does not queue: 0.939331
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 7 (28)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
1 6

Mean message size: 8000 bits

Line speed all links: :9200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8672

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 664

Messages left in network: 8

Maximum queue length: 6 msgs

Node with max queue: 3

Link with max queue: 3

Mean queue length: 0.023479 msgs

Maximum path length: 8 hops

Mean path length: 4.1257 hops

Mean response time per message: 2193.5305 msecs

Mean delay/hop: 531.6685 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 115.6685 msecs

Mean link busy time: 69719.1875 msecs

Probability of link busy (rho): 0.081541

Probability msg does not queue: 0.918459
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 8 (32)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8569

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 558

Messages left in network: it

Maximum queue length: 8 msgs

Node with max queue: 4

Link with max queue: 4

Mean queue length: 0.035435 msgs

Maximum path length: 10 hops

Mean path length: 4.5968 hops

Mean response time per message: 2638.5215 msecs

Mean delay/hop: 573.9971 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 157.9971 msecs

Mean link busy time: 68497.0625 msecs

Probability of link busy (rho): 0.097125

Probability msg does not queue: 0.902875
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8462

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 443

Messages left In network: 19

Maximum queue length: 10 msgs

Node with max queue: 14

Link with max queue: 4

Mean queue length: 0.069628 msgs

Maximum path length: 12 hops

Mean path length: 5.7025 hops

Mean response time per message: 3823.7053 msecs

Mean delay/hop: 670.5313 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 254.5313 msecs

Mean link busy time: 66301.7500 msecs

Probability of link busy (rho): 0.121283

Probability msg does not queue: 0.878717
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): It (44)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8399

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 361

Messages left in network: 38

Maximum queue length: 9 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.076738 msgs

Maximum path length: 12 hops

Mean path length: 6.0798 hops

Mean response time per message: 4060.3425 msecs

Mean delay/hop: 667.8469 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 251.8469 msecs

Mean link busy time: 63483.0313 msecs

Probability of link busy (rho): 0.131012

Probability msg does not queue: 0.868988
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 13 (52)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/cec

Mean message interarrival time: 20000 msecs

Total messages generated: 8403

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 342

Messages left In network: 61

Maximum queue length: 13 msgs

Node with max queue: 28

Link with max queue: 4

Mean queue length: 0.118544 msgs

Maximum path length: 14 hops

Mean path length: 7.1685 hops

Mean response time per message: 5394.8242 msecs

Mean delay/hop: 752.5735 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 336.5735 msecs

Mean link busy time: 63276.5391 msecs

Probability of link busy (rho): 0.149884

Probability msg does not queue: 0.850116
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 14 (56)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8399

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 312

Messages left in network: 87

Maximum queue length: 14 msgs

Node with max queue: 46

Link with max queue: 4

Mean queue length: 0.146285 msgs

Maximum path length: 16 hops

Mean path length: 7.6012 hops

Mean response time per message: 6066.6914 msecs

Mean delay/hop: 798.1174 mse's

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 382.1174 msecs

Mean link busy time: 61233.7227 msecs

Probability of link busy (rho): 0.158483

Probability msg does not queue: 0.841517
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 16 (64)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bIts/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8379

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 263

Messages left In network: 116

Maximum queue length: 24 msgs

Node with max queue: 4

Link with max queue: 4

Mean queue length: 0.190274 msgs

Maximum path length: 18 hops

Mean path length: 8.5920 hops

Mean response time per message: 7514.4414 msecs

Mean delay/hop: 874.5857 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 458.5857 msecs

Mean link busy time: 60081.3164 msecs

Probability of link busy (rho): 0.174970

Probability msg does not queue: 0.825030
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 17 (68)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8371

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 242

Messages left in network: 129

Maximum queue length: 20 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.234719 msgs

Maximum path length: 18 hops

Mean path length: 9.2028 hops

Mean response time per message: 8661.4492 msecs

Mean delay/hop: 941.1804 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 525.1804 msecs

Mean link busy time: 59695.0625 msecs

Probability of link busy (rho): 0.189571

Probability msg does not queue: 0.810429

I-
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 19 (76)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bIts/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8403

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 222

Messages left in network: 81

Maximum queue length: 27 msgs

Node with max queue: 4

Link with max queue: 4

Mean queue length: 0.305433 msgs

Maximum path length: 20 hops

Mean path length: 10.1257 hops

Mean response time per message: 10277.6055 msecs

Mean delay/hop: 1014.9968 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 598.9968 msecs

Mean link busy time: 58196.9180 msecs

Probability of link busy (rho): 0.209996

Probability msg does not queue: 0.790004

w- . -y , w
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 20 (80)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8382

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 195

Messages left In network: 187

Maximum queue length: 26 msgs

Node with max queue: 70

Link with max queue: 4

Mean queue length: 0.378540 msgs

Maximum path length: 22 hops

Mean path length: 10.6435 hops

Mean response time per message: 12197.5586 msecs

Mean delay/hop: 1146.0100 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 730.0100 msecs

Mean link busy time: 58287.7930 msecs

Probability of link busy (rho): 0.224814

Probability msg does not queue: 0.775186

Kkimi % %~~3 .
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 4 (16)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
1 6 II

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 9907

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 1903

Messages left In network: 4

Maximum queue length: 7 msgs

Node with max queue: 12

Link with max queue: 4

Mean queue length: 0.014812 msgs

Maximum path length: 10 hops

Mean path length: 3.3982 hops

Mean response time per message: 1738.7966 msecs

Mean delay/hop: 511.6741 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 95.6741 msecs

Mean link busy time: 120257.7500 msecs

Probability of link busy (rho): 0.062417

Probability msg does not queue: 0.937583
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 5 (20)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 9470

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 1463

Messages left in network: 7

Maximum queue length: 6 msgs

Node with max queue: 16

Link with max queue: 4

Mean queue length: 0.010891 msgs

Maximum path length: 7 hops

Mean path length: 3.1080 hops

Mean response time per message: 1486.4016 msecs

Mean delay/hop: 478.2502 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 62.2502 msecs

Mean link busy time: 83398.1250 msecs

Probability of link busy (rho): 0.060693

Probability msg does not queue: 0.939307
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 7 (28)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6 II

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8987

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 983

Messages left In network: 4

Maximum queue length: 6 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.022754 msgs

Maximum path length: 8 hops

Mean path length: 4.2035 hops

Mean response time per message: 2182.3206 msecs

Mean delay/hop: 519.1675 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 103.1675 msecs

Mean link busy time: 74489.6250 msecs

Probability of link busy (rho): 0.080938

Probability msg does not queue: 0.919062
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 8 (32)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6 It

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8868

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 856

Messages left In network: 12

Maximum queue length: 7 msgs

Node with max queue: 23

Link with max queue: 4

Mean queue length: 0.033797 msgs

Maximum path length: 10 hops

Mean path length: 4.6625 hops

Mean response time per message: 2653.2473 msecs

Mean delay/hop: 569.0610 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 153.0610 msecs

Mean link busy time: 72599.4375 msecs

Probability of link busy (rho): 0.092701

Probability msg does not queue: 0.907299

*. - . .1 F
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1 6 it

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8690

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 667

Messages left in network: 23

Maximum queue length: 10 msgs

Node with max queue: 37

Link with max queue: 4

Mean queue length: 0.068149 msgs

Maximum path length: 12 hops

Mean path length: 5.7530 hops

Mean response time per message: 3837.9099 msecs

Mean delay/hop: 667.1145 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 251.1145 msecs

Mean link busy time: 70789.5000 msecs

Probability of link busy (rho): 0.121248

Probability msg does not queue: 0.878752

-i l 111,1 1 . ...... 1
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): Ii (44)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
1 6 II

Mean message size: 8000 bits

Line speed all links: 19200 blts/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8611

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 570

Messages left in network: 41

Maximum queue length: 10 msgs

Node with max queue: 16

Link with max queue: 4

Mean queue length: 0.077202 msgs

Maximum path length: 13 hops

Mean path length: 6.3127 hops

Mean response time per message: 4213.4688 msecs

Mean delay/hop: 667.4536 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 251.4536 msecs

Mean link busy time: 68500.6250 msecs

Probability of link busy (rho): 0.130229

Probability msg does not queue: 0.869771
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 13 (52)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6 It

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8519

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 461

Messages left in network: 58

Maximum queue length: 16 msgs

Node with max queue: 5

Link with max queue: 4

Mean queue length: 0.127487 msgs

Maximum path length: 15 hops

Mean path length: 7.2198 hops

Mean response time per message: 5639.7773 msecs

Mean delay/hop: 781.1594 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 365.1594 msecs

Mean link busy time: 65324.0664 msecs

Probability of link busy (rho): 0.149708

Probability msg does not queue: 0.850292
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 14 (56)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8531

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 454

Messages left in network: 77

Maximum queue length: 17 msgs

Node with max queue: 52

Link with max queue: 4

Mean queue length: 0.142565 msgs

Maximum path length: 16 hops

Mean path length: 7.6517 hops

Mean response time per message: 6098.0508 msecs

Mean delay/hop: 796.9485 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 380.9485 msecs

Mean link busy time: 62550.7070 msecs

Probability of link busy (rho): 0.155780

Probability msg does not queue: 0.844220
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 16 (64)

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):

1 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8478

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 386

Messages left In network: 92

Maximum queue length: 20 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.196746 msgs

Maximum path length: 18 hops

Mean path length: 8.6327 hops

Mean response time per message: 7608.7266 msecs

Mean delay/hop: 881.3792 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 465.3792 msecs

Mean link busy time: 61365.2461 msecs

Probability of link busy (rho): 0.179242

Probability msg does not queue: 0.820758

hN_
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 17 (68)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):
1 6 it

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message Interarrival time: 20000 msecs

Total messages generated: 8482

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to fallure(s): 394

Messages left In network: 88

Maximum queue length: 19 msgs

Node with max queue: 17

Link with max queue: 4

Mean queue length: 0.237917 msgs

Maximum path length: 19 hops

Mean path length: 9.1823 hops

Mean response time per message: 8741.4414 msecs

Mean delay/hop: 951.9932 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 535.9932 msecs

Mean link busy time: 61513.1406 msecs

Probability of link busy (rho): 0.186532

Probability msg does not queue: 0.813468
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 19 (76)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

1 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8524

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to fallure(s): 328

Messages left in network: 196

Maximum queue length: 26 msgs

Node with max queue: 3

Link with max queue: 4

Mean queue length: 0.336510 msgs

Maximum path length: 21 hops

Mean path length: 10.2530 hops

Mean response time per message: 10960.0195 msecs

Mean delay/hop: 1068.9573 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 652.9573 msecs

Mean link busy time: 60174.3555 msecs

Probability of link busy (rho): 0.211112

Probability msg does not queue: 0.788888
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SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 20 (80)

Failed module(s):
NONE!

Failed node(s) (including those In failed modules):

i 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8481

Messages delivered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 319

Messages left in network: 162

Maximum queue length: 27 msgs

Node with max queue: 7A

Link with max queue: 4

Mean queue length: 0.418360 msgs

Maximum path length: 22 hops

Mean path length: 10.7830 hops

Mean response time per message: 13056.2188 msecs

Mean delay/hop: 1210.8149 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 794.8149 msecs

Mean link busy time: 60823.9492 msecs

Probability of link busy (rho): 0.227400

Probability msg does not queue: 0.772600
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/* E. SIMULATION MODEL SOURCE CODE LISTING *
finclude <stdio.h>
#include (math.h>
#define YES py
#define CR 012
#define ENIJFO 0444 /* to stop adding node numbers *
#define ENUF 444 1* to stop inputting failures *
#define NO n
#define LOWJER-NODE 5 /* to find start nd link col *
#define iSTEP 4 1* each module has four nodes *
#define kSTEP 3 /* to connect node in resp col *
#define LOWER-PLACE 7 /* to access position columns *
#define MAX-COLUMNS 19 /* keeps track of matrix col *
#define LINK ND COL 16 1* finds next nd col for links *
#define NXT MDL COL 14 /* finds next mdl col for links*/
#define NXT-ND-POSN 18 1* finds next node pos'n col *
#define POSITION CALC Qj + 13) %. nodes 1* used to find link nd pos'n *1
#define LARGEST 1024 1* max size of msgarea array *
#define INFINITY 1999999999 /* very large, number *
#define SERVICE-TIME (length *1000)/RATE /* time is in millisecs *

FILE *outfile; 1* save current n/wk topology *
FILE *fopeno;
FILE *infile; 1* restore cur n/wk topology *
FILE *snapout; /* snapshot of cur topology *
FILE *savefile; /* write to stats file *
FILE *statsfile; 1* write to summary at end *
FILE *frequency; /* write to destination file *
FILE *graphit; /* write to graphs file

int PDSITION[256J(19J;
/* used to build network *
/* 0 - position number *
/* 1 - home node number *
/* 2 - status of that node *
/* 3 - home module number *
/* 4 - status of that module *
/* 5 - directly connected b1
/* local node number *
/* 6- status that node *
1* 7 - pos'n number that node *
1* 8 - next dir con local nd *
/* 9 -status that node *
/* 10 - pos'n nmbr that node *
1* 11 - last dir con local nd *
1* 12 - status that node *
1* 13 - pos'n nmbr that node *
/* 14 - link module number *
/* 15 - status link module *
1* 16 - link node that module *
1* 17 - status of link node *
1* 18 - pos'n number link nd *
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int PTRARRAY[6][2; / 3 rows to chg top/bot ptrs */

int nodes; / no. of nodes in network /
int max modules; it max number of mdl desired kI
int max numbers; /t number of node #'s avail */
int cur modules; / number of mdls in the n/wl WI
int start; /t starting # to expand n/wk */

int FREQ[256J[2]; / destination address count /
It 0 - node #, I - msgs rx ti
/t updated by savestats func */

int GFEL[64J[3J; /* global future events list V/
/I 0 - module number */ ,
It 1 - min time of each module /1
It 2 - node with min time /

int MSGAREA[LARGESTJ[40J; /* message work area */
/* 0 - position number */
/* 1 - row availability flag */
/I 2 - message number WI
/I 3 - message size' *
/ 4 - spiral flag this msg /
/ *5 - direction flag */
/I 6 - destination node */
/ *7 - destination module */
/t 8 - send time *1
/* 9 - receive time */
/ 10 - mdl # of spiral chg */
/* 11 - mdl # of direc'n chg t:I

/ 12 - route trace pointer V/
/ 13-39 = route trace area ti

int NODEAREAELARGEST]E60; /* node level svr & q area */
/ 0 - row number */
1* 1 - node number */
/ 2 - server number (1-4) */
/* 3 - server status (0 or 1) I/
/ *4 - arrival time for FEL */
/ 5 - depart time for FEL */
/* 6 - minimum of 4 and 5 *1
/* 7 - server queue pointer */
/* 8 - MSGAREA loc this msg */
/* 9 - 59 available Q slots */

int DIR(64J(2J; / used to set DF, */
int BEGIN; / used to set DF, source */
int END; / used to set DF, destination */
float STATSELARGESTJ5]; / contains simulation results */

/i 0 - node-area row number */
/* 1 - server max-q length 1/
/* 2 - svr total busy time 1/
It 3 - used for msg size graf */
/t 4 - available for use */

int imevent; /* contains the imminent event */
int min-row; /i row where imevent is */

t
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int min-time; /*J time of imminent event V
int CLOCK;
int RATE; /* contains the line speed 3/
int meansize;
int IAT; /* mean msg interarrival time *1
int STABILIZE; /* used to get past startup *1
int no-done; /* no msgs delivered so far !

int no killed; /* contains # undeliv'd msgs *1
int maxmsgs; /* stopping criteria /
int msgno; /* number of individual masgs *!
int location; /t location in msg work array t/
int max-path; /* has the largest path number V
int stopit; /t stop run if no more q-slots /

/I if events not at save time */
/i used in setparams function /

int dirl; / used to setup DF rftx 1 time *1
int clk_first _msg; /* time first msg is delivered /
int clk-lastmsg; /* time last msg is delivered *1
float totalhops; / used for ave. path length
int resptime; / used to find ave. n/w delay *1
float ave_q_length; /t running total of all q_lens */

main C)

int c;
int i;
int k;

for (i = 0; i < 50; ++i)
print f("\n");

printf("\t* *\n");
printf("\t* WELCOME TO THE SIMULATION OF A NEW, EASILY EXPANDABLE *\n");
printf("\t* FAULT TOLERANT GENERAL PURPOSE SELF-ROUTING COMPUTER *\n");
printf("\t* COMMUNICATIONS NETWORK TOPOLOGY! WE BITS DO HOPE *\n");
printf("\t* YOUR EXPERIENCE WITH US IS A PLEASANT ONE. *\n");
printf("\t* t\n");
pri nt f C "\ t**tttttt tt4 tttttt.*tt* .tt \ n") ;

printf("\n\n\n\n\n\n\n");
printf("\t\tktPRESS RETURN TO CONTINUE! ");
c = getcharo;

k =0;
restoreC);
if (cur-modules == 4)

setpointersC) ;
clear failureso);
printf(\n\nThere are no failed nodes or modules in the network.");

, - .,-. . . . ..- '., , " -- ,{ ,- v ",F. , .. ". *" . *.- ."". " "" , *"" " r %' , ." j""" -'"" " ,
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printf("\n\nAll previous failures have been cleared'\n");
current status 0;
snapshot 0;
printf('\nThe current largest node number H);

printf (is %o", POSITION[max-numbers-1] 1]);
printf(" at position number %d.\n", max-numbers-1);

repeati: printf("\nDo you want to add node numbers? ")
ignore1: c = getcharo);

if (c YES) {
k node noso;

repeat5: printf("\nDid you enter the number(s) correctly? "
ignore5: c = getchar();

if (c == NO)
goto repeat 1;

else if (c == CR)
goto ignore5;

else if (c != YES) {
printf("\nThat was not a valid response!\n");
goto repeat5;

)

else if (c == CR)
goto ignorel;

else if (c != NO) {
printf("\nThat was not a valid response.\n");
goto repeat1;

I

if (k != 0)
max numbers = k;

if (cur-modules 4) {
repeat3: printf("\nDo you want to set up the ");

printf("minimum 4 module network? )
ignore3: c = getcharo);

if (c YES) f
start = 0;
max-modules = 4;
curmodules = 0;
for i = 0; i < 4; ++i)

nodes = buildo); /* build four indep mdls */
nextmodule(; /* connect them together *1
set_pointers); /* set for more expans'n */
current statuso;
snapshot C);

) ,N
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else if (c == CR)
goto ignore3;

else if (c != NO) t
printf("\nThat was not a valid response!\n");
goto repeat3;

}
}

repeat7: printf("\nDo you want to alter ");
printf("the number of modules(nodes)? ")

ignore7: c = getchar C);
if (c == YES)

altero;

else if (c == CR)
goto ignore7;

else if (c != NO)
t

printf("\nThat was not a valid response!\n");
goto repeat7;

}

/* The following portion of the program sets up the existing topology t./
/* with failures if desired, and prepares to send messages over the */
I* network. .I

repeatlO: printf("\nDo you want the operational network to have");
printf(" failed nodes or modules? ");

ignorelO: c = getcharo);

if (c == YES) {
failure_setupo);
current statuso);
snapshot C);

else if (c -- CR)
goto ignorelO;

else if (c != NO)
printf("\nThat was not a valid response!\n");
goto repeat I0;

repeatB: printf("\nAre you ready to send ");
printf("traffic over the network? ");

ignore8: c = getcharo;

if (c == NO) C
repeat9: printf("\nDo you want to alter the network? ");



224

ignore9: c getcharo);
if (c == YES) f

clear failureso;
printf("\nAll previous failures';
printf("have been clearedl\n");
alter 0;
goto repeat 10;

else if (c == CR)
goto ignore9;

else if (c ==NO)
goto end;

else
printf("\nThat was not a valid response");
goto repeat9;

3

else if (c == CR)
goto ignoreS;

else if (c != YES)
printf("\nThat was not a valid response!\n");
goto repeatS;

simulate 0;
end: saveo;

I

node nosoC

/* This function is used to load node numbers into the matrix. It is t
/* called by the main network control program. *

int i;
int data;

i =max -numbers;
scanfC1\n~o", &data);
while~data != ENUFO) I

POSITI0NU3J1]3 = data;
printf("\n\t%6d %6o ",i, POSITIONEiAt1J;

scanf("%o", &data);

return Ci);



buildoC

/* This function is used to build the fully connected modules of 4 *
1* nds each. A separate function (next-module or add-module) adds *
/* these modules to the network. It's called by the main network ctl ~
1* program, the alter, and partition functions. V4

int i;
int j~;
int temp;
int k;
int 1;
int upper;
int location;
int home-module;

i = start;
upper = i + iSTEP;

while Ci < upper) t
k LOWER-NODE;
j 0;
I LOWER PLACE;
temp =POSITION~startJE13;
location =start;
home-module = startf4 + 1;

while Qj < kSTEP)
if (temp !=POSITION~iJE1J) C

POSITIONti3[k3 = temp;
POSITION~iJMl = location;

++temp;
++location;
k = k + kSTEP;
I1=1 + kSTEP;

else
++temp;
++location;

POSITION~IJ33 home-module;

++cur -modul es;
start = i;
return i);
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current status()

/* This function is used to make the decision as to whether or not to V1
/* print the current connectivity matrix. It is called by the main t/
/* network control program and the alter function. V!

int c;

printf("\nThe current number of modules ');

printf("in the network is %d.", cur_modules);
printf("\n\nThe current number of nodes is Md.", nodes);
printf("\n\nThe total number of node numbers");
printf(" available is d.", maxnumbers - nodes);

repeat4: printf("\n\nDo you want to see the current connectivity");
printf(" matrix? ");

ignore4: c = getcharo;
if (c == YES)

printmatrixC);

else if (c == CR)
goto ignore4;

else if (c != NO) t
printf("\nThat was not a valid response!");
goto repeat4;

)3

next module()

/* This function connects local nds to the appropriate link nodes in 1/
/* the next module for the minimum 4 module network. Called by the *1
/* main control program. t/

int a;
int j;

j = 0;
while (j < nodes) f

a = POSITIONCALC;
POSITIONj][NXTNDPOSN] = a;
POSITIONtj][LINKNDCOL] = POSITIONlaril];
POSITIONj][NXTMDLCOL] = POSITION[a[3];
POSITION[a][NXTNDPOSN] = j;
POSITIONEaJ[LINK ND COL] = POSITION[j][1];
POSITIONa3[NXT-MDL COL] = POSITION[j][3;



227

j=j+ 2;

alter C)

/- This function is used to decide which type of alterations will be t/
/* made to the existing network. The appropriate subfunction's called Z/
/* according to the decision made. Alter's called by the main network */
/* control program. ./

int c;
int i;
int j;

repeat2: printf("\nHow many modules do you want the new network");
printf(" to have? ");
scan f("%d", &maxmodules);

printf("\nDid you enter the number correctly?
ignore2: c = getchar C);

if (c == NO)
goto repeat2;

else if (c == CR)
goto ignore2;

else if (c = YES) {
printf("\nThat was not a valid response!\n");
goto repeat2;

if (maxmodules < 4) /* invalid request */
printf("\nThe network must have ");
printf("atleast 4 modules to exist!\n");
goto repeat2;

)

else if ((c = maxmodules . 3) 0) f /* net's partitioned *1
j = partitionC);
if (j == 1)

goto repeat2;
else f

current status C);
snapshot C);

II

else if (max modules < cur-modules) { /t want less modules t/
cur modules = 0;
start = 0;
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for (i =O; i < 4; ++i)
nodes = buildo;

next moduleo);
s~tsuointers C);
while (i < max-modules)

nodes = buildo;
addmoduleo);
++i ;

cur modules = i;
current statuso;
snapshot );

else if (cur modules == max-modules) f
printf(Z\nThat is how many modules you already have'\n");
goto repeat2;

I

else if (max modules 2 (max numbers/4)) f / out of bounds *1
printf(Q\nThere are currently a total of %d", max_numbers);
printf(" node numbers available. ");
printf("\nCan't have %d", max_modules);
printf(" modules.\n");
goto repeat2;

}

else C
for i = (cur modules +1); i <= maxmodules; ++i) t

nodes = buildo;
add module 0;

I
current status o);
snapshot (;

II

partition()

/ This function takes care of the case where the nbr of modules in /
/ the network is a multiple of three (3). When this happens, the .1
/ network is partitioned into three separate but equal subnets. When *1
/ the nbr of modules is equal to or greater than 12 and an integer *1
/ multiple of three, network performance is the same as a one 1/3 V/
/ that size. Partition is called by the alter function. */

int c;
int j;

,i
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repeatc: printf("\n\nThe number of modules ");
printf("you requested would leave the network");
printf("\npartitioned into three separate but equal ");
printf(" subnetworks of \nd", max-modules/3);
printf(" modules each. Is that what you want?\t\t");

ignorec: c = getcharo;
if (c == NO)

j=1;

else if (c == CR)
goto ignorec;

else if (c != YES)
printf("\nThat was not a valid response!\n");
goto repeat_c;

}

else {
printf("\n\nIf you want 6 or 9 modules, then the resulting ");
printf("topology of 2 or \n3 modules each ");
printf("per subnet is less than a fully connected mesh");
printf("\ntype topology. So ");
printf("that is not a valid request! If you want to ");
printf("\nevaluate 12 or more modules whose number is an '

printf("integer multiple \nof 3, then performance of that");
printf(" partitioned network is the same");
printf("\nas a network with 1/3 the number ");
printf(=of modules you requested. For \nexample, a 12 ");
printf("module network performs like the minimum 4 module");
printf("\none, and is equal to 3 independent 4 module");
printf( networks. Enter a \nrequest for the more simple");
printf(= network. Your entry should be 1/3 \nof your");
printf(" earlier request.\n\n");
j =1;

return(j);
J)

addmodul e)

/* This module adds newly generated modules to the existing network */

/* when the request is greater than the minimum four module topology. ./
/* It is called by the alter function.

int temp;
int tempi;
int temp2;
int temp3;
int i;
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/* The following code changes pointers & links at the top of the nwk. ~

templ = PTR-ARRAYrOJ(OJ;
PTR -ARRAY(03(O] = FTP ARRAYE11J(O;
PTR_-ARRAY(11JE0 = FIR ARRAYr2J(O);
temp =start - 4;
PTR-ARRAYE23]EOJ tem;;

for Qi = 0; i < 3; ++i)
temp2 = PTRARRAYti3CO3;
temp3 = PTRARRAYli]Ell;

POSITION~temp2JNXTND-PDSN3 PTR-ARRAY~i]1:1;
POSITION~temp23LINKND-COL] = PDSITIONI~temp3](1J;
POSITIDNtterp2[NXTMDL-CDLJ = PDSITION~temp3JU3I;

POSITIONttemp3JNXTND-POSNJ = FTP_-ARRAY~i](0];
PaSITION~temp3l[LINKND-COL3 = POSITION[temp23[l];
PGSIrIGNctemp3]NXTMDL-COL] = PDSITION~temp2](3];

POSITION~templJNXTND-PDSNJ temnp;
POSITIONEtemp1J(LINK-ND-COLJ = POSITION~tempJ(13;
FOSITION~temp1JENXTJIDL-COL] PDSITION~tempJ3;

POSITION~temp3ENXTND-POSN3 = templ;
PDSITIONttempJ (LINK ND COL] = POSITIDN~tempI1 C;
PGSITIO)Nttemp3CNXT MDL CDL3 = PDSITIONttempI33;

IS The next code changes the pointers and links on the bottom of nwk *

tempi = PTR-ARRAY[33[O];
FIR ARRAYC33[OJ = FTP -ARRAY[43t0J;
PTR ARRAYC43E03 = FIR ARRAYC5](03;
++temp;
PTP ARRAY(53E03 = temp;

for Q = 3; i < 6; ++i)
temp2 =FTRAPRAY~i3[0J;
temp3 = FIRARRAYliJ[l3;

POSITION~temp23[NXTNDPOSNI = FTR ARRAYNHIJ(;
POSITIGN~temp23CLINK I"ND COL3 POSITION~temp3J[13;
PQSITIDN~temp23[NXTMDL CDL3 = POSITION~temp3]t3];

POSITIONEtemp33[NXTD-P.OSN] = FTR-ARRAYli ]LO3;
POSITIONttemp33LINKND-CGL3 = POSITION~temp2JC13;
POSITIONttemp3](NXTMDL-CDLJ = FOSITION~temp2]33;

++temp;



231

PO3SITION~templ3[NXT-D.PCSNJ temp;
POSITION~tepl]ELINKNDCOI-3 = POSITION~temtp~rl;
PG~ITIONRetmp &'3NXTKDLCOLJ = POSITION~temp:3;

POSITIONrtemp3[NXTyDPOSN3 tempt;
POSITIOIN~temp3[LINK ND CDL] = POSITIOtNrtempl J1t];
POSITION~temp3[NXTIIDL-COLJ = POSITION~templ333;

setjpointers()

1$ This function initializes pointers used to expand the minimum four V:
1* module network. It is called by the main network control program. *f

PTR ARRAYEO3tOJ = 4;
PTR ARPAY(0JL11 = 1;
PTRARRAY1JE03 = 8;
FTR APPAY[13[1J = 5;
PTR ARRAY12JEO]3 = 12;
PTR ARRAYE2J311 = 9;
PTR ARRAY133tOJ = 6;
PTR ARRAY[311 = 3;
PTR ARRAY[4JE03 = 10;
PTR ARRAY143[1J = 7;
PTR ARRAYE53[OJ = 14;
PTR-ARRAY[5]311 = 11;

f ai 1lur eset up 0)

/* This function sets up the network to simulate failed mdls and nds t
/* for network anlalysis. It is called by the main network ctrl prgn.

int c;
mnt fail;
mnt i;
int j~;

int MDL -FAILURE(50JE1J;
int ND-FAILURE1IOOJCI];

repeatil: printf("\nDo you want complete modules to fail'? n

ignorell: c = getcharo;

if (c == YES)

printf("\nEnter modules you want to fail, )
printf("one module number per line.\n\n");
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sL~arfC"\nd", fail);
while (fail I= ENUr)

MDL -FAILLJREU31JEO= fail;
printf("\n\t%6d %6d ", i, MDL_FAILUPEliJ(O3);

scanfC"\n~d", &Vail);

repeatl2: printfC"\nDid you enter the numbers correctly? f

ignorel2: c: getcharo;

if (c == NO)
goto repeatil;

else if (c == CR)
goto ignorel2;

else if (c I! YES) C
printfC"\rThat was not a valid response!\n");
goto, repeat 12;

while Qj < i) f
fail = MDL -FAILUREjJ(OJ;
if (fail < 1 1: fail > cur modules) f

printf("\n\nThere is no module in the");
printf(" current topology numbered %.4d!", fail);
printfC"\n\nYour request is ignored");
printf(" since the smallest module in the");
printf("\n\nnetwork is one, and the largest");
printf(" is %4d.\n", curjnodules);

else '
mark module(fail);

++j

repeatl4: printf("\nDo you also want nodes to fail? ")

ignorel4: c =getcharo;
if (c == YES)

goto nodes2;
else if (c ==CR)

goto ignorel4;

else if (c !=NO) C
printf("\nThat was not a valid response!\n");
goto repeat 14;

IV
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else if (c == CR)
goto ignorell;

else if (c!= NO) f
printf("\nThat was not a valid response!\n");
goto repeatil;

}

else
nodes2: printf("\nEnter nodes you want to fail, one");

printf(" node number per line.\n\n ");
i =1;

scanf("\n%d", &fail);
while (fail != ENUF) f

NDFAILURE[i][0] = fail;
printf("\n\t%6d %6d ", i, NDFAILURE[i][O]);
++i ;

scanf("\nd", &fail);
i

repeat13: printf("\nDid you enter the numbers correctly? ");
ignore13: c = getcharo);

if (c == NO)
goto repeat14;

else if (c == CR)
goto ignorel3;

else if (c != YES) f
printf("\nThat was not a valid response'\n");
goto repeatl3;

for (j 1; j < i; ++j) {
fail = NDFAILURE[j][O];
if (fail > nodes) C

printf('\n\nThere is no node in the current");
printf(" topology numbered M4d'", fail);
printf("\n\nYour request is ignored since the ");
printf("largest node in the network is %4d'", nodes);

}

else
mark node(fail);

}

mark_module(x) N

/* This function sets l's in the appropriate columns of the network /
I* connectivity matrix to show that the desired module has failed. It /k
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/ also calls set links to update the contained nodes in the module. V
/ It is called by the failure-setup function. */

int x;
C

int i;
int j;

i = 0;
while (i < start) (

if (POSITION[iE3J == f)
POSITION[i][2J = 1;
POSITION[i][4] = 1;

if (POSITION[iJ(14) =- x)
POSITIONEiJ[15J = 1;

++i ;

j=0;
while CJ < start) {

if (POSITION[jE2J == 1)
set link(j);

++j;

mark_node(y)

/ This function sets l's in the appropriate columns of the network */
/ connectivity matrix to show that the desired nodes have failed. It V1
/t is called by the failuresetup function. i/

int y;
f

int i;

for (i = 0; i < start; ++i)
if (POSITIONEiJ[IJ == POSITION[y][1]) f

POSITION[iJ[2] = 1;
set link(i);

set link(kill)

/t This funct'n sets the appropriate links in the next module section *1
/ to reflect that the desired nodes have failed. This information is *1
/t needed for routing. It's called by mark_module and marknode. *I

int kill;
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int k;

for (k = 0; k < start; ++k)
if (POSITION~k]E5J = POSITION~kilJl])

POSITIONRkJE63 1;
if (PO2SITION~k3[8J = POSITION~killRl])

POSITIONRk3t9J 1;
if (POSITION~k][11J = POSITION~kill3tl])

POSITION~k][12J 1;
if (POSITION~kJ(16] = POSITION~killE1)

POSITION~k3t17J 1;

print matrixo)

1* This function prints the network connectivity matrix which defines t
1* the complete network topology. Called by current-statut function. 1

int i;
t ,j;

print ft "\nn\n~n\n~n~n~n~n~n\n\t
printf( "NETWORK CONNECTIVITY ");
printf(" MATRIX~n\n~n\n\n\n");
printf("\n\n POS'N HOME HOME
print ft"DESTINATION NODE");
printf(" NEXT MODULE");
printf("\n # NODE MD'L
printf("(LOCAL) "
printf("\n\n #* ST # ST #* ST POS'N #f ST")
print f("POS'N #* ST POS'N #* ST NODE ST POS'N\n\n");
printf(' ( 0");
for (i = 1; i < MAXCOLUMNS; ++i)

printf("%5d", i);
printf(" )");
printf("\n\n\n");
for (i = 0; i < nodes; ++i)

pr int f("\n\n ");
printf("%4d", i);
for Qj = 1; j < MAXCOLUMNS; ++j)

if Qj == 1 :: j == 5 :: i == 8 H: , 11 H IP= ~
printf('7.So", POSITIONtillj]);

else
printf("%5d", POSITION~iJElj));

pr int f("\n")
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save C)

/* This function saves current global parameters prior to exit. It is ~
1* called by the main network control program. f

int i;
int j;

outfile = f openC("network. save", "1wi);
fprintf~outfile, "%d\n", nodes);
fprintf(outfile, "7.d\n", max;modules);
fprintf(outfile, "%d\n", rnaxynurbers);
fprintf(outfile, "7.d\n", cur modules);
fprintf(outfile, "7.d\n", start);
fprintf~outfile, "\n\n\n\t\t
fprintf(outfile, "CONNECTIVITY MATRIX\n\n");
fprintf(outfile, " 0N$);
for Ci = 1; i < MAXCOLUMNS; ++i)

fprintf~outfile, "\n\n");
for Ci =0; i < nodes; ++i) t

fprintf~outfile, "\n\n");
fprintf~outfile, "%.4d", D);
for Qj = 1; j < MAX-COLUMNS; ++j)

i f Qj 1= I j == 5 : j == 8 : j == I 1 6 =1)

fprintf~outfile, "%.5o", POSITION~i3[j3);
else

fprintf~outfile, "%.5d", POSITION~iJ1jJ);

for Ci = nodes; i < max numbers; ++i)
fprintf(outfile, "\n\n");
fprintf(outfile, "%4d %5o", i, POSITION~iJ(IJ);

I

fprintf~outfile, "\n\n\n\t\t\t\t");
fpr int f(out file, "PTR 7ARRAY");
for QCi 0; i < 6; ++D t

fprintf~outfile, "\n\n");
for Qj = 0; j < 2; +4-j)

fprintf~outfile, "%5d", PTRARAY~iJlj3);

fclose~out file);

restoreoC

/* This function restores current parameters at the beginning of *
1* simulation run. This way global parameters can be preserved from *1
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/* one run until the next. It's called by the main network ctrl prgui.

int i;
int j;
int skipl(202;
int skip2[2OJ;

infile = fopenC"network.save", "r");
fscanf(infile, "%d\n", &nodes);
fscanf~infile, "7.d\n", &maxjaodules);
fscanf(infile, "Zd\n", &max numbers);
fscanf(infile, 'Xd\n", &cur_modules);
fscanf(infile, "%d\n", &start);
fscanf~infile, "U.s 7/.*s\n", skipi, skip2);

for (i =0; i < MAXCOLUMNS; ++i)
fscanf(infile, 'X*5d", &j);

for Qi = 0; i < nodes; ++i)
for Qj = 0; j < MAXCOLUMNS; ++j)

if Qj == 1 :: j == 5 :: j == :: j It i:~= 16)
fscanf(infile, "%.So", &POSITION~iJ[jJ);

else
fscanf~infile, "%'Ed", &POSITION[iJlj3);

for (i = nodes; i < max -numbers; ++i)
fscanf(infile, "XMd", &POSITIONti)[03);

fscanf(infile, "%.5o", &POSITIONtiJEIJ);

fscanf~infile, "%*s\n", skipl);
for (i = 0; i < 6; ++i)

for Qj = 0; ,j < 2; ++j)
fscatv'(infile, "%~5d", &PTPARPAY~i]1jJ);

fclose(infile);

clear failuresC)

/* This function restores failed nodes and modules to the current *
f* network topology. It is called by the main network control prgi. *

mnt j;

for Qj = 0; j ( start; ++j)
POSITION~j][23 = 0;
POSITIONE 3 E43 0;
POSITIONEj]t6J = 0;
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POSITIONQEJ93 0;
POSITION~j]E123 0;
POSITIONrj]E153 0;
POSITIONQjJ1l73 0;

I

snapshotoC

I* This function saves in a file the current network topology of the 1
/* simulation module upon request. Called by main network ctl prgn..1

int i;
int j;
mnt c;

repeat15: printfC"\nDo you want a snapshot")
printfC"of the current topology? "1)

ignorelS: c =getcharo);
if (c ==YES)

snapout = fopen("network.snap", "a");
fprintf(snapout, "\n~n\n\n\n\n\n");
fprintf (snapout, "\n\nThe current number of )

fprintf~snapout, "modules is %.4d.", curjmodules);
fprintf(snapout, "\n\nThe number of nodes is %.4d.", nodes);
fprintf~snapout, "\n\n\n\n\n\t\t\t\t~t");
fprintf(snapout, "CONNECTIVITY MATRIX");
fprintf(snapout, "\n\n");
fprintf(snapout, "POSN H-OME HOME"';
fprintf~snapout, " DESTINATION NODE");
fprintf(snapout, "\t\t\tNEXT MODULE");
fprintf~snapout, "\n #* NODE )
fprintf(snapout, "MD'L (LOCAL) )
fprintf(snapout, "\n\n # ST # ST # T)
fprintf(snapout, " POS'N f# ST POS'N # ST POS'N");
fprintf(snapout, " #t ST NODE ST POS'N\n\n");
fprintf~snapout, of ( 0");
for Ci = 1; i < MAX-COLUMNS; ++i)

fprintf~snapout, "%5d", i);
fprintf(snapout, " ))
fprintf~snapout, "\n\n\n");
for Ci = 0; i < nodes; ++i)

fprintf(snapout, "\n\n");
fprintf~snapout, "%.4d", i);
for QJ 1; j < MAX-COLUMNS; ++j)

if Qj= 1 1: j == 5 !: j == 8 1: j = iIt j 16)

elefprintf(snapout, "%5o", POSITION~i3(jI);

fprintf~snapout, "%.5d", POSITION'LiJljJ);
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fclose(snapout);
I

else if (c == CR)
goto ignore15;

else if (c != NO) (
printf("\nThat was not a valid response!\n");
goto repeat 15; Ii

I}

simulateo)

/* This function is the major control program for traffic simulation :/
/ on the network established in the first part of this program. V1
{

int temp;

printf("\nWhat speed would you like to assign to the links?
scanf("Xd", &RATE);
printf("\nWhat is the mean message size (in characters)'
scanf("Xd", &meansize);
printf("\nWhat is the mean message interarrival ");
printfQ"time in rsecs)?
scanf("%d", &IAT);
printf("\nHow many messages should be delivered ");
printf("before gathering statistics? ");
scanf("%d", &STABILIZE);

repeat6: printf("\nHow many messages should be used ");
printf("for gathering statistics? ")
scanf("%d", &maxmsgs);

if (maxmsgs == 0) f
printf("\nThat is not a valid request!\n");
goto repeatG;

initializeC);
again: minFELO;

timeadvanceo;
adjust_time(minti me);
if (imevent == 1) {

arrival (min row);
if (stop-it == 1)

goto quit;
I

else f
departure(min jrow);
if (stop-it == I)

goto quit;
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more_eventso;
temp = nodone - STABILIZE;
if (temp < maxmsgs)

gotco again;
else (

clk_lastmsg = CLOCK;
printf("\n\nTotal messages generated was %d.\n\n", msgno);
address cnto; /t write to file dest'n address count /
graphso; /t write to file for final graphs V/

quit: if (stop-it == 0)
reportso;

initialize()

/t This function initializes the work areas for the beginning of the */

/t simulation and schedules the first arrival at each server in the Vf
/t network. It is called by the simulate function. *1

int 1; It used to set svc numibers t-
int i; /t used to access rows V-
int j; /* used to access columns t/
int k; /* used to access individual rows */

CLOCK = 0;
msg_no = 0;
min _time = INFINITY;
location =-1;
no done = 0;
no-killed = 0;
dirl= 0; /* set up matrix needed to find the DF /i
total-hops = 0;
resptime = 0;
maxpath = 0;
stop-it = 0;
ave_q_length = 0;

for (i =0; i < LARGEST; ++i) C
j = 0;
while (j < 40) t

if (j == 0)
MSGAREAi][j] = i;

else if (j == 12)
MSGAREA~i][j] = 12; I* rt trace is empty V

else if (j == I :: j == 10 :1 j == 11)
MSGAREA[i][j] = 0;

else
MSGAREA[i][j] = 999; /* used to end trace V7

*1r
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S=0;
while Uj < (nodes * 4))

1 =1;
for Qk i; k < Qi + 4); +-,-) f

j 0;
while Qj < 60)t

if (j ==0) 1* set row number
NODE APEAEk]j3J =V;

else if (7j= 1) /* set node number *
NODE AREA~k][j3 = (i/4);

else if Qj == 2) / * set svr# V1
NODEAREA~klj3J 1;

++I;

else if Qj == 5) 1* show server empty *
NODEAREAlk3jE.J INFINITY;

else if Q(=j 7) /* show queue em~pty
NODE AREA~k3jJ = 8;

else
NODE AREAtk3j3J = 0;

i k;

for (Q 1; i "=cur-modules; ++i) t
S0;

while Qj < 3)
if (j == 0)

GFEL~i][j] = i
else

GFEL~i3j1J = 0;

for Q = 0; i < LARGEST; ++i) /*~ set to "0" STATS matrix *
for Qj = 0; j <(5; ++j)

if (j == 0)
STATS~i][j] = i; 1* save node-area row #* *

else
STATSri]Ej3 = 0;

/* The following code initializes the destination address count. *

for QC= 0; i < nodes; ++i)
FREGME]03 = i
FREQtiJ311 = 0;
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/* The next code schedules the first msg for each server of each nd. *-

i = 0;
while (i < (nodes *. 4)) t

k = i/4; /* used to access rows of POSITION *1
if (POSITIONRkJ[2] == 0) /* has this node failed> */

NODEAREA[i][4] = nextmsgo; /* get first arrival */
else t

for (j = i; j < i + 4; ++j)
NODEAREA~j3[43 = INFINITY;

i = j - 1; /* skip past failed nodes V
3

++i ;

I
IJ

timeadvanceo)

/* This function advances the clock to the beginning of the next */
/* event and sets imevent for arrival or departure. Sets mrin time and V1
1* min-row. It is called by the simulate function. V

int i;

min time = INFINITY;
for (i = 1; i /= cur modules; ++i)

if (GFELUi]1]3 7= min-time) f
rin time = GFELMiE[i];
min row GFEL[i][2];

if (NODE AREA[emin row][4] min time)
imevent = 1;

else
imevent = 2;

CLOCK = CLOCK + min_time;

adjust time(time)

/* This function adjusts downward the times of all other activities. /
/ It is called by the simulate function. 1/

int time; /* contains min-time value /

k
int k;
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int j;
int temp;

for (k = 0; k < (nodes * 4); ++k)
j = k/4;

/* Adjust times of active nds only, do not bother svrs of failed nds. *1

if (NODE AREAk3]4] > 0 && POSITION[j][2] == 0) {
temp = (NODEAREA~k][4] - time);
NODEAREA~k]C4] = temp;

if (NODE AREAEk[5] > 0 && PDSITION[j][2] == 0)
temp = (NODE AREAEk3[53 - time);
NODEAREA~k][5] = temp;

for (k = 0; k < nodes * 4; ++k)
if ((no done >= STABILIZE) && (NODE AREAk][3] == 1))

STATS[k][2] = STATS~k][2] + time; /* update svr busy tm /

arrival (m)

/* This function handles newly generated messages as they arrive at a *1
/* nd. It calls a function to set initial parameters in the msgarea *1
/ matrix. This function is not called for transient messages since *1
/* they already have key parameters set. Transient and new arrivals ./

/* are both processed after arrival at a node by the queue function. ./
/ Arrival is called by the simulate function. */

int m; 1* points to min-row in node-area array ./

(C

int place; / rename of location for this func

place = setparams(m);
if (stop-it ==)

NODEAREA[m][4] = nextmsgo); /t generate next arrival V/
sourceq(m, place); /* ensure msg starts at right svr V/

I

destn-node(x, 1)

/* This function terminates a message at its final dest'n node upon */

/t arrival. It is called by the stageit function. *1

int x; / contains the destination node number *1
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int 1; /* points to the msg posn in msgarea W/

int i;
int temp;

temp = MSG AREA[flJ12]; /* update route trace VI
++terfmp;
MSGPAREA[1][temp] = x;
MSGAREA[l][121 = temp;

/* printf("\n\nNode %d has completed delivery", MEGAREAEI][1Z3); 1,
/I printf(" to destination node d.", x); W/

MSGAREA1I][9] = CLOCK;
++no done;
if ((nofdone > STABILIZE) && (no-done I= max-msgs + STABILIZE))

/I has network gone past startup VI
save_stats(l);

else
MSGAREA[I][1] = 0; / show row is now available WI
for (i = 2; i < 40; ++i)

if (i == 12)
MSGAPEA[lI]i] = 12; / reset trace pointer WV

else if (i == 10 :: i == 11)
MSGAREA11Ei] = 0;

else
MSG-AEA[!3Ei] = 999; /t clear for reuse W/

)

!)

more eventso

/* This function checks the future events list for each nd to see if WI
/ other events are scheduled to occur simultaneout-ly with the */
/I imminent event. It is called by the simulate function. WI

{

int 1;

for (1 = 0; 1 < (nodes * 4); ++1)
if ((NODEAREA[1][4] == 0) && (Q != min-row))

arrival (1);

for ( = 0; 1 < (nodes * 4); ++1)
if ((NODE AREA[1][5] == 0) && ( minrow))

departure(l);

Ir W, q- C
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minFEL(

/* This function computes the new imminent event at each nd & places t/
/* the min time from each module in the global future events list. :/
It it is called by the simulate functions. */

C

int i;
int j;
int k;
int templ;
int temp2;

for i = 0; i < (nodes * 4); ++i) C
NODE AREA[i][6] = NODEAREA~i [43;
if (NODE AREAUiJ]5J < NODEAREA[iJ[6])

NODE-AREA [i][6J = NODEAREA[i][5;

/t Thic code updates the global future events lists. It finds the */
/I minimum FEL value of the 16 servers in each module, & places that *If
/i value in the global FEL.

k =1;
i =0;
while (i < (nodes * 4)) {

templ= INFINITY;
for (j = j < (i + 16); ++j)

if (NODE AREA[j][6] < tempt)
termpl = NODEAREA[j][6];
temp2 = j;

GFELtkJ[1] = tenipl;
GFELkE2] = temp2;
i =j;
++k;

departure(m)

/f This function simulates the departure of a message from the server /
/I (link). Upon departure, it sets the message up at the receiving V1
/* end for further processing, gives the next waiting message the svr V/
/I if one is waiting, or sets the svr to idle if no msgs are queued V/
/I for the server. It is called by the simulate function. */

int m; / points to min_row in node-area array *1

int i;

. .. . . - ' ' " " '



246

int j;
int tempi;
int temp2;
int length;

i = M;
stage_it(i, NODEAREAtill8]); I set up msg at recvr V/
if (NODEAREAri][7] == 8) ( 1* is the queue empty *1

NODEAPEAi][3] 0; / set svr to idle
NODEAREAEi][5= INFINITY; I* show no departures V

}

I* This part of the function gives the next msg in the queue the svr, ./
/I sets it's departure time on the server's FEL, and updates the q. V/

else {
temp2 = NODEAREACi][9]; I* get next mcg froom queue /
for (j = 9; j < 59; ++j)

NODEAREA[iJ[j] = NODE_AREAi][j + 1];
tempi = NODEAREA[i][73;
-- tempi;
NODEAREA~i][7] = tempi;
length = MSGAIEA[temp2][33;
NODE_AREA~i][5] = SERVICETIME;
NODE AREAEiJ(S] = temp2;

linknode(i, j)

/* This function finds the next link node in the path of a message as t!
I* it is routed to it's destination. This link node may be within the *f
/* same module or contained in the "link module" for the node. It is V/
I* called by the stageit and sourceq functions. :/

int i; I* points to node just arrived at /1
int j; I* points to msg posn in msgarea Vi

nt SF; I* the spiral flag
int DF; I* the direction flag V1
int gone; I* a flag when a mdl is cut-off *1
int temp;
int tempi;
int temp2;
int temp3;
int temp4; I* contains module nmbr of cur node /
int flip; I* use to return to again as needed Vf
int serverl; I* points to link node at svr #1 V/
int server2; I* points to link node at svr #2 V/
int server3; I* points to link node at svr #3 ./
int server4; /t points to link node at svr #4 V/
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temp = i; /t set to node just arrived at
temp4 =POSITION~temp)3J3; /t get current module number

again: SF = HSGAREAEjJL4J;
SF = SF * 2; It shift one bit left *
D= MSGAREAtjJC5J;

temp2 =SF + DF; It logical "or" function c
flip =0;

gone =0;

1* The following test finds and queues at the link node. *

temp3 = POSITIONttempJ(5J;
tempt = temp3 & 03;
servert = tempt;

tefpSj POSITION~tempJESJ;
tempt = teMPS & 03;
server2 =tempt;

tenip3 = POSITIONtenp)EIJ;
tempt = temp3 & 03;
server3 = tempt;

if (server! == terap2) It svrl linkl node *
if (POSITIONttempK6) = 0)

queue(temp * 4, j); It queue at server #14 V

else if (MSG AREArJ]E6J == POSITION~temp]C71) 1* destn dead "'I
kill itCPOSITION~teapJE7J, temp, j); 1* can't make it' *

else (
gone =flipjt~terap, temp4, j);
if (gone 0)

flip 1;

else if (server2 == temp2)
if (POSITION~temp)E9J = 0)

queue~temp * 4 + 1, j); It queue at server #2 Vc

else if (MSG -AREACJJE6J == POSITION~tempJ(1OJ) It dest dead *c!
kill it(POSITION[tempJ[lOJ, temp, j);

else (
gone =flip it(temtp, temp4, j);
if (gone ==0)

flip =;

I

else if (server3 == temp2)
if (POSITIONttempJEt2J = 0)

queue(temp * 4 + 2, j); It queue at server #3/
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else if (MSGAREAj3[6] == POSITIONtemp[13]) /* dest dead V/
kill it(POSITION[temp][13], temp, j);

else f
gone = flip_it(temp, temp4, j);
if (gone == 0)

flip 1;
}

else / the case when svr4 = tenpZ t/

if (POSITION~tempJ[17J == 0)
queue(temp * 4 + 3, j); /. queue at server #4 ti

else if (MSG_AREA[j][6] == POSITION~temp][18J) / dest dead .t/
kill it(POSITION[temp]E183, temp, j);

else
gone = flipit(temp, temp4, j);
if (gone == 0)

flip =1;

if (flip == 1)
goto again; I* return to find alternate link node .i

flip_it (curnode, action_mdl, 1)

/I This function changes spiral and direction flags to route messages ./
/ around failed nodes and modules. Called by link-node function. ti

int curnode; / contains node just arrivwd at *1
int action mdl; It contains module number of failed node */
int 1; / points to row in msgarea matrix V'!

int gone; / used to signal that a mdl is unreachable /1
int temp;
int sourcemdl;

gone = 0;
if (MSGAREA[1][13] == 999)
if (action mdl MSGAREA[I][I0) / both spirals cutoff /1

source mdl = (cur-node / 4) + 1;
else

source mdl = (MSGAREA[1][13] / 4) + 1; / get source mdl # .1

if (action-mdl == MSGAREA[I][IOJ) / changed SF/DF once this ti
/f mdl which means both spirals are cut /-
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if (MSGAREA[131] == 0) f /* 0 means SF but not DF :V.
/t yet, so chg direct'n retracing previous path *!

MSGAREA11][11] = MSG_AREA[lJ[11) + 1;
temp = MSGAREA[I][5]; Pt chg direction flag '.'

if (temp 0)
MSGAREA[1)][5 = I;

else
MSGAREAEI3[53 = 0;

temp = MSGAREA[13[4]; / reset SF to retrace path /
if (temp == 0)

MSGAREA[I][4] = 1;

else
MSGAREA[1][41 = 0;

I

else if (MSG_-AREA[1][11] == 1) C / if 1, already tried 1:
/. direction chg on one spiral, so try same direct'n */

/I on the other spiral *-

MSG AREA[1][11] = MSGAREA[1][11] + 1;
temp = MSGAPEA[I][4J; /f chg spiral flag *1
if (temp == 0)

MSGAREA[I][4] = 1;
else

MSGAREA[1]4] = 0;

else
gone = unreachable(cur_nde, source_mdl, 1);

/I In the above case, spiral changes have occured and both directio:: V
/I have been attempted on both spirals. Canit get to destination. 1/

else { / one spiral is out, chg Sr to the other *1
MSGAREA[1310 = actionmdl;
temp = MSG AREA[l][4];

if (tem'p == 0)
MSGAREA[1][4] = 1;

else
MSGAREA[l][4] = 0;

I

return (gone)

queue(i, j)

/* This function assigns the server if idle, or queues the message if 1:/
/I the server is busy upon arrival of the message. It's called by *1

S.

V7
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/* the stage_it,link_node, and sourceq functions./

int i; /* points to row of next activity ./
int j; /* points to msg place in msgarea array *t

int temp;
int length;

temp = MSGAREA[j][12]; /* update route trace /
++temp;
MSGAREAEj3[temp] = NODE AREAi 1J[;
MSGAREA[j][12] = temp;

if (NODE AREAiJ[3] 0) T /* Is the server avail /
NODEAREAi3(3] = 1;
NODE AREAi[8] = j; /* set link to msg_area t!
length = MSGAREAlj][3;
NODEAREArill5] = SERVICETIME; /t set departure tir :e -t'

I

else {
temp =NODEAREAtiJ[7J;
+4-temp;
if (temp > 59) fC

printf("\n\nNo more queue slots are available at node ");
printf("%d, server number", NODEAREA1i][1J);
printf(" d.", NODEAREA[i][2]);
stop-it = 1;

3

else {
NODEAREA~i3[tempJ = j; /* queue at server *1
NODEAREA~i][7] = temp;

temp = NODEAREA[i][7] - 8;
if (no done >= STABILIZE)

if (STATSi][1] < temp) / update t',axq len :,
STATS[iJ]I] = temp;

II

save stats(row)

/* This function saves pertinent information on messages for stats I:/
/* analysis. It also releases the message work area for reuse, and /1
/. updates totalhops thus far for all msgs that have been delivered. t.!
/* It is called by the destination node function when the final *1
/ destination is reached. t-

int row; / points to row to be saved */

en . . U ~-' -. W ~ ~ ~ % U>
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int i;
int temp;

savefile =fopetiC"statistics", "oals)

if ((no-done - STABILIZE) == 1)

/* The following code is bypassed to reduce disk storage space. V1
It The code is used to get a trace of messages used for statistics. V1

It *V
1*fprintf(savefile, "\n~n~n MSG# SIZE SF DF ");*!
Itfprintf~savefile, "Ta-ND MDL SEND REC'Y CS CD"); V1
Itfprintf(savefile, "T-PTR~t---- MESSAG3E TRACE --- \n");*f
Itfprintf(savefile, "\t\t\tkt\t\t (mdl #s) \n"');V

II V t
It fprintf~savefile, "l\n"); Vi
I =i2;.1

It temp =MSGAREA[row~tiJ;
I if (t emp !999)
It fprintf~savefile, "%5d. ", no done); Vi

It while (temp 99
if (i ==3 H.'i == 8 H.'i 9)=:9)

1* fprintf(savefile, "7d", temp'; 1
Itelse Vi
It fprintf(savefile, "%.4d", temp);

It ++i; *
Ittemp = MSGAREA~rowJliJ; V

i = MSG 7AREA~row)E6J; It prepare to update dest'n address *1
FREQ~i3L.13 = FREQtiJE13 + 1;0

size graph~row); It update stats to plot size Vi

i =14;
temp =MSG -AREArrow]ti];
while (temp != 999) f

++total hops; It update total hops V1

temp =MSG-AREA~row)Ei);

temp =i -14; It find path length this ms -t.'

i f (temvp > maxpath)
maxpath = temp; It update maxpath length

resptime =resptime + (MSGAPEA~rowJ(9J - MSG-AREA[row][83);

mean queueo; It total aveq, all q's
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fclose (savefile);

MSGAREA~row][1I = 0; /* show row is now available V!
for i = 2; i < 40; ++i)

if (i == 12)
MSGAREA~row][iJ = 12; /* reset trace pointer

else if (i == 10 1: i == 11)
MSGAREA[row][i] = 0;

else
MSGAREArrow][i] = 999; /* clear for reuse */

setpar ars (m)

/* This function assigns the newly arrived message a number, sets the *1
1* destination address, message size, spiral and direction flags, and ./
/* other key parameters. It is called by the arrival function. .:"

int m; / points to min-row in node-area array V/

f
int loop; /* used to find free row in msgarea *1
int j;

++msgno;
loop = 0;

freel: ++location;
if (location LARGEST) f

location 0;
++loop;
if (loop 2)

printf(\n\nNo more message spaces available!");
stop-it = 1;
j = location;
goto quit; / out of cycle quit, no more spaces /I

j location; /* used to save typing longer vart/
if (MSGAREAj][I] != 0)

goto free1;

MSGAREAlj][O] = j;
MSGAREA[j]E1] = 1; /t show row is in use
MSGAREArJJ[2] = msgno;
MSGAREAUj][3] = sizeo; /* set new msg size t!
MSGAREAJ][6] = address(m); /t set the dest'n address V!
MSG_AREA~j][7] = ((MSGAREArj]EG] / 4) + 1); / set destn module .
MSGAREA[jJ[8] = CLOCK;
set_flag(m, j);
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quit: return(j);

stage_it(x,y)

/* This function determines whether or not a message has reached it's V1
/* destination module and calls the appropriate functri to proc:ets it. tf
/I It is called by the depa-ture function. */

int x; / points to min row in nodearea array V1
int y; / points to msg locat'n msg-area array V/

int tempi;
int temp2; /* points to node just arrived at t-
int server; / contains server no. just vacated V

tempi = NODE AREA[x]1I; /. get the minimum node number
server = NODE AREA[x][2]; / get svr# of node just departed V/

/I The next if-else struts find arrived at nd based on svr just left. */

if (server == 1)
temp2 = POSITION[templ][7];

else if (server == 2)
temp2 = POSITIONttempl][10J;

else if (server == 3)
temp2 = POSITIONtempl][11];

else
temp2 = POSITION[terapl]EI];

if (MSG_AREA~y][7] == POSITION[temp2[3]) /t dest'n module tV

if (MSGAREACyJ[63 == terp2) /t dest'n node V
destn node(temp2,y); /* dest'n node is reached %

else if (MSGAREA[y][6J == POSITION[temp2][7])
if (POSITION[temp2][6J == 0)

queue(temp2 * 4, y); /t take svr #1 to dest'n VI
else

kill-it(POSITON[temp2][7), temp2, y);

else if (MSG_AREA[y][6] == POSITION[temp2[10J)
if (POSITION[temp2][9J == 0)

queue(temp2 * 4 + 1, y); / svr #2 to dest'n /
else

kill it(POSITION[temp2][lO], temp2, y);

% %. .%
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el se
if (rosITION[temp2l[12J 0)

queue(temp2 * 4 + 2, y); / svr t3 to dest'n /
else

kill-itrPOSITION~temp2][13, temp2, y);

else
linknode(temp2,y); / queue at link node V1

kill_it(k, c, m)

/f This funct'n reports the inability of the network to deliver a msg *,
/I to it's final destination due to node failure. It also updates the V1
/I counter that keeps track of undelivered messages, and clears the It1
/t message area row for reuse. Called by stage_it, link-node and V
/I sourceq functions. -*

int k; / contains number of failed node *:
int m; / contains min row in rsg_area mfatrix V/
int c; /* contains current node number ./

int i;
int terap; / contains source node number */

if (MSGAREA[mJ[13J == 999)
temp = c;

else
tehp = MSGAREA[im3])EI;

1* The next few lines were bypassed to reduce program run time. /

It printf("\n\nMessage number %d from source node ", MSGAREA[m][2); ,I
/I printf("%d to destination node %d", temp, MSOAREA n,[6]); *1
/I printf(" \nis killed at node %d because "); 1

/I printf("node %d has failed!", c, k); 1:

++nokilled;
MSGAREA~m[1] = 0; / show row is now availahle /
for (i = 2; i < 40; ++i)

if (i == 12)
MSGAREAm][iJ = 12; r

else if (i == 10 ', i == 11)
MSGAREA~m][i] = 0;

else
MSGAREAlm][i] = 999; / clear for reuse V1

| _

wg dLrt~.tv-.
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unreachable(cur.node, sourcemdl, 1)

1* Unreachable reports the inability of the network to deliver a msg V/
Pt to it's final destination due to the fact that the netwk is cut in *
1* two. In the case when the network is cut, without this function, *
1* messages will loop back and forth between the 2 distant-most mrdis V'
1* in the contained subloop. It is called by the flipjit function. *

int cur-node; 1* points to the current node of msg t
int sourcejndl; It the mdl where looping msg started t
mn 1; It msg position in msgarea array

mnt temp;
mnt i;
mnt gone; It flag used when mdl is unreachable V~

if (MSG AREA[13t133J= 999)
temp =cur~node;

else
temp = MSGAPEAl31I3);

It The next few lines of code was skipped to reduce prograrir~ tir~ie. VI

It printf(\n~nMessage num~ber %.d from source V t
it print f("module ", MSG..AREAl]E21.);*.
It printfC"%d to destination module %d", sourcenmdi, MSGQAPEAEIII71); V/
It print fC" \nis killed at nodr %d because module ", temp); *
It printfC"7.d is inaccessible to");
It printfC" module %.d'", MSGAPEAE1JE73, source mdl); *

++ no killed;
MSG AFEAE1J11 = 0; It show row is now available V1
for Ci =2; i < 40; ++i)

if Qi == 12)
KSG-AREA13[i3 12;

else if Ci == 10 :: i == 11)
MSGAREA1J1i3 = 0;

else
MSGAREA13li3 = 999; /t clear for reuse f/

gone = 1;

return (gone);

set..flag(m, 1)

/t Setjflag sets spiral and direction flags for newly arrived msgs. T/7
It It is called by the setparams function. *1

mnt m; It points to min-row in node-area array Vl
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int 1; 1* points to location in mtsg area array 1

f

int temapi;
int temip2;

templ MSG AREA[lJE63;
ternp2 =POSITIONEtemp11J & 003; /* pick off lower 3D bits ~

if ((temp2 ==0) C temp2 == 1)) /* top spiral
MSG-AREAE13[4J = 0;

else
MSG-AREA[13E43 = 1; /* bottom spiral *

if (dirl == 0) /* set up matrix to find DF *1
diro;

DF-set(m, 1);

I

double rndmo)

1* This function returns a random number between 0 and 1. Called by 1
/* the size and next.msg function.

tF

float normalize;
unsigned int y;
double temp;

y =randC);
normalize pow(2.0, :31.0) -- 1;
temp = y /normalize;
return(C(double)terap);

I

size()

/* This function calculates a random size for the next message, based ~
1* on an exponential distribution. Called by the setparams funct'n. /

float length;
double rndmo;

again: length =(-mean size *log(rndmo))) .t8.0;
if (SERVICE-TIME < 1)

goto again;

return(length);
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address (mi)

/t This function generates the address for newly arrived messages. It -.
/t is called by the set_params function.

int m; / points to rinrow in node-area matrix V/
{

int i;
unsigned int temp;

next1: temp = rando);
i = temp % nodes;

if (Mi >= nodes) :: (i == NODEAREA[m][1))
goto nexti;

It else C *.
/I The next three lines were bypassed to reduce program run time. t/

It printf("\n\nNode %d is sending to det'ri ", NODEAREA[rJ1E); ±1
/t printf("node d.", i); */
It. 1 */

return(i);
J

next_msg ()

/t This function calculates and returns the arrival time (in msecs) :/
/I for the next message. The value returned is selected fro, an V/
/i exponential probability distribution, which means the messag,--
/i arrival pattern follows a poisson arrival process. Next_r.,sg is k/
/i called by the initialize and arrival functions. k/

double rndmo);
float time;

nextl: time = -IAT * log(rndmo);
if (time < 1)

goto nexti;

return (time);

write matrixo)

/t This function prints the network connectivity matrix. k/

* F ,. ~ * t9\ t w.C 'Nf
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int i;
int j;

printf(" ( 0");
for Ci = 1; i -' 19; ++i)

printf("%5d", i);
printf(" )"l);

print fC"\n\n\n");
for Ci =0; i < node~s; ++i)

pr int fC("\n\n") ;
printfC"%4d", D);
for QJ = 1; j < 19; +-vj)

if Qj == 1 :: j == 5 :: j G= j 11 j 1=ii6),~
printfQ'7.5o", POSITIONrilrjl);

else
printf("%5d 1 , POSITION~il[j));

pGrELC)

1* This function prints the global future events list. V1

int i;
int ,j;

for (i = 1; i <= cur -modules; ++i)
pr int fC(\n\n ") ;
for QC= 0; j < 3; ++j)

printfC'\t.5d", GFEL~i3[jJ);

pNODE-AREAOC

1* This function prints the node area matrix. -

int i;
int j;

print f("\n\n\n");
for Ci = 0; i ( 10; ++i) f

printf("\n\n");
for Qj = 0; j < 28; ++j)

printf(".Sd", NODEAREAEiJljJ);

J% 11- V~i %
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pSTATSC)

/I This function prints the STATS matrix. i

{

int i;
int j;

printf("\n\n");
for (i = 0; i < 64; ++i) C

print f ("\n");
for CJ = 0; j < 5; ++j)

printf("Sd", STATStiJEjJ);
I

dir)

/ This function sets up the work matrix used to find the distance *1
/* from source module to destination mdl. Sets END to de -tk'n, -gt!N t'
/t to source. It does so by establishing an array of module nurhers r I
/I in the order the modules are accessed via the network thread ng V!
/ pattern. The access pattern is not sequential! di ) is called ty */
/t the set-flag function. *I

int terap;
int k;
int next;
int module;

dirl = 1;
temp = 0;
for QI = 0; k < cur modules; ++k)

next = PQSITION[temp][7];
temp = POSITION[next]11B];
module = POSITION'next]14;
DIRtk][O] = k;
DIREk[1 = module;

DF-set(m, 1)

/I This function uses the DIP matrix to set the direction flag. It */
/* insures that the path taken in the shortest in every case. It is .1/
/ called by the set-flag function. W/

int m; / points to min-row in node-area array *1
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int 1; /* points to location in msg area array t!

{

int k;
int temp3;
int temp;
int templ;

temp = NODEAREA~mi1Jl; /. get node # of min activity V!
for (k = 0; k < curmodules; ++k) f

if (DIREkE13 == MSGAREAE1]E7]) /. destination module V.
END = DIRCk][0;

if (DIREk]E1 == POSITION~tempiE3]) / source module 1
BEGIN = DIRCk]COJ;

temp3 = END - BEGIN; /* find the distance fm source to dest'n t/

/* If the number of modules is odd, then the maximum distance between V.
/* any two is an even integer, thus the maximum path length is also Vi
I. even (even #/2). So the paths split in exactly half. When the *I
/* distance is the same in both directions, the algorithm selects V
I/ with probability .5 either of the directions. This selection is V.
/* made based on whether the destination is to the left or right of I.'

/* the source. V1

if (curmodules X 2 == 1) t / Odd number of modules -*1
tempi = cur_modules/2;
if (terfip3 <= tempi && temp3 > 0)

MSGAREA[1][5] = 1; / go in the left direction V7

else if (temp3 < -tempI)
MSGAREA[1][5] = 1; I* go in the left direction V.

else
MSGAREAE[E53 = 0; / go in the right direction /

I

/1 If the number of modules is even, the maximum distance between'er, V1
/* is an odd integer, which divided in half yields a remainder term,. V!
/I If the mdle distance is the same in both directions, a subroutine */
/I called "equal" is called to set DF based on the location of the V/
I. S/D nodes on the Source/Destination module. V1

else A It Even number of modules! V1
tempi = cur_modules/2;

if (tempS < tempi && temp3 > 0) /* strictly less than case .:/
KSG_AREA[1][5] = 1; / go in the left direction 't.

else if (tempC < -templ) / another < case, still 1'f

MSG_AREA[I][5] 1; / go in the left direction V/
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else if ((temp3 > -tempi && temp3 < 0) H (temp3 > te irpl))
MSGAREA[1][5] = 0; /* go in the right direction */

else /* the case when tempt equals temp3 *1
equal(m, 1); /I so call "equal" to examine S/D nodes /

}}

equal(m, 1)

/* This short function is the last option to setting the DF when the +/
/. distance from source module to destination module is exactly 1!
/* equal in both directions. It is called by the DF_set functi.-n

int m,; /* points to minjow in node-area matrix "1
int 1; /* points to msg location in msgarea matrix *1

if ((NODEAREAr[1] 7.2 0 0) && (MSGAREA[]1[6J % 2 == 1))
/* s-even, d-,dd ti,

MSGAREA[I][5] = 0; /* go to the right t/
else if ((NODEAREA~m][1) % 2 == 1) && (MSGAREAE1[6) % 2 == 0))

/* s-odd, d-even t/
MSGAREArI][5J = 1; /* go to the left t!

else if ((NODEAREA[m][1] % 2 0) && (MSGAREA[I][6 % 2 == 0))
/ s & d even 1/

MSGAREA[I1[5J = 1; / go to the left t/
else

MSGAREA1I][5] = 0; It go to thu ri ;"t I:!

pMSGAREA C)

/I This function prints the messagearea matrix.

int m;
int n;

printf ("\n\n~n");
for (m = 0; m < 20; ++m) t

printf ("\n\n");
for (n = 0; n < 30; ++n)

printf("7.5d", MSG_AREAlm][nJ);

source_q(m, 1)

/I This function ensures that newly arrived messages at each node are V.

"p
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1* placed on the correct output queue from that nd. Since "new' rsgE 11
/* arrive at the links of the node, failure to transfer ther,, tc, the V!
/* proper output queue from that node lengthens the route towards the
/* destination. This function is called by the arrival function. */

int m; /* points to minrow in nodearea array /
int 1; /t points to msg_posn in msgarea array 4/

int templ; It points to node msg just arrived at t!
templ= NODE AREAWm][1]; /* get node msg just arrived at

if (MSGAREA[I][7] I= POSITIONternpl][3]) /t de st'", nttodu'e "
link_node(templ, I);

else
if (MSGA-ARA[[6] == POSITIONtempl][71) / find dest'n rd '

if (POSITION[terpl][61 == 0)
queueftempi * 4, 1); I: svr #1 to destination t.'

else
kill it(POSITION[tenaplJC7l, templ , 1);

else if (MSG_AREA[1]6] == POSITION[terpl][IC.)
if (POSITION[teaipl][9] == 0)

queue(te p1 I: 4 + 1, 1); / svr #2 to dest'n /
else

killit(POSITION[templ[10), teuipi, 1);

else if (MSG AREA[1][6] == POSITION[tempi][133)
if (POSITIONEtempl][12J == 0)

queueftempl .* 4 + 2, 1); I. svr #3 to dest'n /1
else

kill it(POSITIONEtempL][13], tenp!, 1);

else I
printf("\n\nLogic error in source_q function!");

addr ess cnt )

I* This function saves the count of the number of msgF ser. to each ./
/* node in the network. This information is stored in a file called .. '
1* destination. This function is called by the sinmulate function. t'

int i;

frequency = fopen("destination", "a");
fprintf(frequency, "\n\n\n NODE NO MSGS\n\n");

for i = 0; i < nodes; ++i) {
|I o
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fprintf~frequency, '\tY~d \tY~d", FREOI~iJ[01, FPEC-[i)[17);
fprintf(frequency, "\n") ;

fclose( frequency);

size..graph Crow)

/* Size graphs generates stats used to plot the message size graphs. V1
1* It is called by the save-stats function. t

int row;

int stepi;
mnt step2;
int temp;

if (MSG3 AREA~row][3 ] < 2000)
++STATSE02 [3];

else if (MSGAREA~row][31 > - 38000)
++STATS[ 19] E:31;

else f
step2 = 2;
for (stepi = 2; stepl < 240; ++stepl)

if((MSG AREA[rowl[3J >= 1000 4~step2) &&'
(MSG-AREA[rowJ[33 < 2000 *stepi)) f

temrp = stepi - 1;
+-'STATS[temsp][3J;
step2 -2 * stepi;

graphs()

/* This function saves the num~bers used to sketch the graphs Jf msg *
It size and interarrival timte distributions. It moves these values 1
/4: from~ a matrix called STATS into a file ca.led graphs. This funct'n V1
/1 is called by the simulate function. I

f
imt sttepI;
itt step.,;
int temip;
int temp2;

graphit = icpen("graphs', "ao);
fprintf(graphit, "\n\n\n\t\t MSG SIZE STATS");
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fprAntf~graphit, "\n~n class# class range frequency");
step2 = 3;
fprintf~graphit, "\n'xn~t1. H)

temp2 = STATSrOir3J;
fprintf(graphit, " 0 < 3000\tY~d", temp2);

for (stepi 2; stepi < 20; ++stepl)
temfp =stepi - 1;
fprintf~graphit, U\n\n~t%d."I stepi);
if (stepi < 10)

fprintf(graphit,
temp2 = STATSEtemp)E3J;
fprintf(graphit, "%Sd < %.Sd", 1000 *step2, 3000 *stepi);
fprintf(graphit, "\t%d", temp2);
step2 = 3 * stepi;

fprintf(graphit1 "\n\n\t20.";
teaip2 =STATSEi9JE3J;
fprintf(graphit1 "' = 57000\t~d", temp2);
fprintf~graphit, M\n\n\n\n\n\n\n\n\n");

I

meanqueueoC

ft Mean queue updates the running total used to find the mean queue *
It length at the end of the simulation run. It is called by the save-*
1* stats function. V7

int i;
mnt j;
int k;
mnt failed nodes;
mnt temapi;
int zeroes;
float temap;
float temp2;

k = 0;
t emp =0;

temapi =0;

temp2 =0;

failed-nodes =0;
zeroes = 0;

It zeroes =0 - 1; *

for Qi = 0; i < nodes; ++i)
if CPOSITION1iJ[2J == 1)

++fai led-nodes;

for Ci = 0; 1 K nodes *4; ++i) /*I get total q length su, tI-
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j = NODEAREAiJE7];
tew*pl = j - 8;

/* k = i/4;

/* if (POSITION[k][2] == 0 && tempi ==) 
/* ++zeroes; /* count It of empty quues :,'
1* else if (POSITIONEkJ[2] == 0) .1/

temp = temp + tempi;
}

tempi = (nodes- failed nodes) * 4;
temp2 = temp / (tempi - zeroes);
ave_q_length ave_q_length + temp2; /* sum of aveq length when t/

/* each message is delivered 1./

reportsC)

/* This function calculates and reports for study, results of the 1/
/* simulation run. It is called by the simulate funcion. V

int i;
int n;
int left_msgs;
int failednodes;
int templ;
int j;
int meantime; /* mean msg tx time per hop i','

nt networktime; /* for time til next msg del'd V7
float temp;
float te,,p2;
float m;
float p;
float 1;
float k;
float d;
float avepath;
float avedelay; /t to find ave n/wI. resp time V1
float delayhop; / average message delay/hop iV!

failed nodes = 0;
statsfile = fopen("summaryn, "a");
fprintf(statsfile, "\n\n\n'\n");
fprintf(statsfile, "\n\n \t\t\tSUMMAY OF SIMULATION RFSJLT$");
fprint f(stat-,file, "\n\n\n") ;

fprintf(statsfile, " \t\tNumber of modules (nodes):\t\t");
fprintf(statsfile, "%d (Md)", ma'j._modules, nodes);

=0;

i 0;
fprintf(statsfile, "\n\n \t\tFailed modue(s):\n\t\t")
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while i < nodes) C
if (POSITIONEi]C4J == 1) {

fprintf(statsfile, "%4d", POSITION[i]E3J);
++j;

i =i + 4;

if (j == 0)
fprintf(statsfile, " NONE!");

j=0;
n =0;
fprint f(statsfile, "\n\n");
fprintf(statsfile, \t\tFailed node(s) (including those ");
fprintf(statsfile, "in failed modules):\n\t\t ");
for i = 0; i < nodes; ++i)

if (POSITIONEiJE2J == 1) (
fprintf(statsfile, "%4d", i);
++j;
++fai lednodes;
++n;
if (n > 10) f

n = 0;
fprintf(statsfile, "\n \t\t ");

I

if (j 0)
fprintf(statsfile, " NONE!");

mean time = (1000 * mean size t 8) / RATE; /t trns time in msecs t!
if (mean-time > (resp_time / max_msgs))

mean-time = resp_time / wciaxjnsgs;

if ((clk_lastmsg - clk firstmsg) < mean time)
network-time = mean-time; / total time it takes to V

/t deliver max_msgs Vt
else

networktime = clk-lastmsg - clkfirst msg;

temp2 max_msgs;
temp = network_time;
1 = temp / temp2; / time 'til nxt msg delivered */
left-msgs = msgno - (STABILIZE + no-killed + maxjisgs);

temp = 0;
for (i = 0; i <' nodes * 4; 44i)

temp = temp + STATSEiJ(21; / total time all svrs busy t/
k = temp / ((nodes - failed-nodes) * 4); / ave link busy time V

m = k / network-time; / prob that a link is busy V
if (m > 1) Pt this text is needed since t

m = 1; / several msgs can arrive in ft
/I short period of time t/

LN -cO
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t emp 1 = 0;
temp = STATS~templJ(1J;
for (i =I; i < nodes *4; +-4i) I

if (STATSti3[1J >temp)
temp STATSEM13l; 1* find the maximum q len 4c!; tV
terop i1; /* corresp nodelsvr it's at ~

n =temp; /* leave it it-, variable n

p =ave..qjlength / maxjiisgs; /1: find average queue length ~

avepath = total-_hops I maxmsgs; 1* find average path leng.th V4c
temp resptihie;
temp2 maxmsgs;
ave delay = temp / temp2; It average delay per msg/hop *

delayhop = avefielay / avepath; 1* find ave delay/msg/hop *

if (delayhop <= mean-time) f
dcelay.hop =-mean~time;
d =0;

else
d delayhop - meantime; /* average queueing time/msg *11

fprintf(statsfile, "\n~n \t~tMean message size:");
fprintf(statsfile, "\t\t\t%d bits", mean-size * ED;
fprintf~statsfile, "\n\n \t\tLine speed all linkr.s:\t\t\t");
fprintf(statsfile, "%d bits/sec", PATE);
f pr int f(statsf ilIe, "\n\n \t\tMean riessage irtere-rriva(t")
fprintf~statsfile, "time:\t\t7.d msecs", IAT);
fprintf(statsfile, "\n\n \ttT'te. messages")
fprintf(statsfile, "generated:\t\t%d",hign;
fprintf~statsfile, "\n\n \t\tMessages delivered before");
fprintf(statsfile, " stats:\t%d", STABILIZE);
fprintf~statsfile, "\n\n \t\tMessages used for");
fprintf~statsfile, " statistics:\t\t~d", max..msgs);
fprintf~statsfile, "\n\n \t\tMessages undelivered due to";
fprintf(statsfile, "failure(s):\t.d", nojilled);
fprintf~statsfile, "\n\n \t\tflessages left in network");
fprintf~statsfile, ":\t\t7.d", leftmsgs);
fprintf(statsfile, "\n\n \t\tMaximum queue")
fprintf(statsfile, "length:\t\t\t%d msgs", n);

if (n >0){
fprintt(statsfile, "\n\n \t\tNode with hoax queue:\t\t\t");
fprintf~statsfile, "Ud", NODEAEA~tenp1t13);
fprintf(statsfile, "\n\n \t\tLink with max queue:\t\t\t");
fprintf(statsfile, "U.", NODEAPEA~ternpl3t2Ji;

......
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el se
fprintf~statsfile, "\n\n \t\tNode with")
fprintf~statsfile, "miax queue:\t\t\tNONE");
fprintf~statsfile, "\ri\n \t\tLink with ");
fprintf~statsfile, "max queue:\t\t~tNONE");

I

fprintf~statsfile, "\n\n \t\tMean queue )

fprintf~statsfile, "length:\t~t\t%.6f rsgs", p);
fprintf(statsfile, "\n\n \t\t~aximum path length:\t\t\t");
fprintf(statsfile, "%d hops", maxpath);
fprintf(statsfile, "\n\n \t\tMean path length:\t\t\t");
fprintf(statsfile, "%.4f hops", avepath);
fprintf(statsfile, "\n\n \t\tMean response time per");
fprintf~statsfile, " message:\t\t7..4f msecs", ave delay);
fprintf(statsfile, "\n\n \t\tMean delayfhop:\t~t\t'.t");
fprintf~statsfile, "%.4f msecs", delay hc'p);
fprintf(statsfile, "\n\n \t\tMean transm~ission tr~f.p)
fprintf(statsfile, "\t~tV~d mrsecs", mean_time);
fprintf~statsfile, "\n~n \t\tMean queueing tirne!hop.-');

fprintf(statsfile, "\n\n \t~tMean link- busy time.-");
fprintf~statsfile, "\t\t\t%.4f msecs", k);
fpriritf(statsfile, "\n~n \t\tProbability of linkll busy");
fprintf~statsfile, " (rho):\t~t/'.Ef", mn);
fprintf~statsfile, "\n\n \t\tProbability msg does not queue");
fprintf~statsfile, ":\t\t%.Gf", 1 - 0n;

fprint f(statsfile, "\n\n\n\n\n\n\n~n\n");

fclose(statsfile);
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